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by those that overweight the underlying stocks relative to their benchmarks. It is stronger

among options with higher unhedgeable risks. The �ndings are consistent with a hedging and
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1 Introduction

Options are widely used for speculation and hedging purposes. Their embedded leverages make

them appealing to speculators (Easley, O'hara, and Srinivas (1998)) and there is a large literature

studying whether investors' option positions predict the underlying stock returns through an

information channel. For example, Pan and Poteshman (2006) and Ge, Lin, and Pearson (2016)

�nd that option trading volume contains private information and forecasts future stock returns.1

The hedging role is well understood for the index option market, in which large net buying

pressure from option end-users for out-of-the-money put options exists and contributes to the

index-option expensiveness and negatively sloped implied volatility curve.2 However, so far there

is limited evidence about where hedging takes place in equity option markets, i.e. options written

on individual stocks, and what the pricing implication is. This paper aims to �ll this gap in the

literature.

If we view investors' stock holdings as endowments, their stock positions should contain in-

formation on their hedging demands for equity options, which can be used to manage endowment

risks. This paper looks at the stock holdings of institutional investors, who are major holders

of the U.S. equity market. Combined with the fact that they are more sophisticated than indi-

vidual investors, they are more likely to be end-users who use equity options for hedging. Koski

and Ponti� (1999) �nd evidence consistent with the story that mutual funds use derivatives as

a low cost way, due to embedded leverages, to achieve desired risk exposures. Cao, Ghysels,

and Hatheway (2011) con�rm the story using derivatives positions of mutual funds. Speci�cally,

they �nd that mutual funds use derivatives to reduce risks following bad performance, which

may cause out�ows from funds and make portfolios riskier. Cici and Palacios (2015) examine

1Other related studies include Aragon and Martin (2012), Cao, Chen, and Gri�n (2005), Hu (2014), Ni, Pan,
and Poteshman (2008), and Roll, Schwartz, and Subrahmanyam (2010).

2See Bollen and Whaley (2004), Chen, Joslin, and Ni (2019), and Garleanu, Pedersen, and Poteshman (2008).



option holdings of mutual funds and �nd that funds use options to e�ectively lower risk with no

evidence for aggressive risk-taking. Chen (2011) �nds evidence that hedge funds use derivatives

to reduce risk-taking. While the above papers associate derivative use with fund characteristics

and examine how it would a�ect fund performance, this paper focuses on the pricing implica-

tion of institutional investors' hedging demands in equity option markets, that is, how they may

a�ect cross-sectional option returns. Due to limited evidence associating derivative use with

increased institutional risk-taking, this paper focuses on institutional hedging activities using

equity options.3

I use the Her�ndahl-Hirschman Index (HHI henceforth), constructed from institutional hold-

ings on a �rm's stock, as a �rm-level proxy for stock holders' hedging demands for options written

on the stock. HHI is a widely used concentration measure. High HHI indicates that a �rm's

stocks are concentrated among a few large holders, who are likely to place a large share of their

wealth in this single �rm. As a consequence, those holders may have high hedging demands

for the �rm's options. Imagine a case in which a mutual fund substantially overweights a stock

relative to its benchmark based on some positive long-term information about the �rm's funda-

mental. If the �rm encounters uncertain events during the holding period, the fund may prefer

to use the �rm's options to hedge rather than liquidate part of their positions and buy back later,

which can potentially incur large transaction costs and high taxes on short-term capital gains.

If investors have relatively higher hedging demands for some stocks' options, option market

makers are expected to charge higher prices to absorb the order imbalances, which leads to

lower subsequent returns on those options. Past literature documents the fact that options are

non-redundant assets and the e�ect of demand imbalance on option pricing: Unlike in Black

and Scholes (1973) model, option market makers cannot perfectly hedge their positions due to

3The most commonly cited reason for derivative use by institutional investors is hedging (Levich, Hayt, and
Ripston (1999)). Koski and Ponti� (1999) �nd that only 8.5% of mutual funds surveyed use derivatives for
speculative purposes.
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market frictions (Figlewski (1989); Green and Figlewski (1999)). Bollen and Whaley (2004) �nd

that changes in implied volatilities are related to option order �ows. Muravyev (2016) �nds that

order imbalances attributable to inventory risk have greater predictive power than any other

commonly used option return predictors. Garleanu, Pedersen, and Poteshman (2008) (GPP

hereafter) explicitly model demand pressure e�ects on option prices. In their model, the price

impact of demand pressure is larger for options written on the stock with higher unhedgeable

risks. However, their model treats demand imbalance in option markets as exogenous and is

agnostic about the source of option end-users' demand.

This paper explores option demands from institutional investors in order to hedge against

risks originated from their stock positions. I argue that HHI constructed from positions in

the underlying stock is positively correlated with stock holders' hedging demand for options

written on that stock, which should negatively predict option returns as suggested by the demand

pressure channel. Empirically, I �nd that HHI negatively predicts cross-sectional option returns,

consistent with the predicted sign. The negative predictability remains strong after controlling for

a wide range of option return predictors and stock characteristics in Fama-MacBeth regressions.

I measure option returns across individual stocks using variance risk premium (VRP hence-

forth), following Heston and Li (2020). The VRP of a given stock is calculated as the held-to-

maturity return of an option portfolio, consisting of out-of-the-money (OTM) options written

on that stock, daily hedged with the underlying stock. I name that option portfolio VIX port-

folio and name its return VIX return. These terms come from the CBOE VIX index, which is

constructed from a portfolio of OTM options whose held-to-maturity payo� equals the future

variance of the underlying stock return. For robustness, I also use the delta-hedged return of

at-the-money (ATM) put (call) constructed by Bakshi and Kapadia (2003) as an alternative
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measure.4 All measures above hedge away option exposure to the movement of underlying stock

prices at daily frequency and yield the same negative option return predictability from HHI.5

I construct HHI using stock ownership data in the Thomson Reuters S12 and S34 databases,

respectively. S12 records stock holdings of individual mutual funds. S34 aggregates holdings of

funds under the same family and reports as a single entity. S34 also covers stock holdings of other

13f institutions, such as insurance companies and pension funds. Thus, S34 has broader coverage

than S12 but less granularity. I �nd that both measures negatively predict cross-sectional option

returns. In a horse race, the individual-fund-level HHI turns out to be a better option return

predictor than the institution-level HHI. A possible explanation is that fund managers within

the same family have incentives to compete with each other in a tournament for promotion

and subsidization from the family (Gaspar, Massa, and Matos (2006) and Kempf and Ruenzi

(2008)). Thus, when they make hedging decisions, they put more weights on the holdings of

their own funds than on the net holdings of the whole family. In this case, the granularity of

S12 outweighs the broad coverage of S34 and the individual-fund-level HHI is a better proxy for

hedging demand. Therefore, this paper focuses on the fund-level measure.

The hedging and demand pressure channel consists of two necessary components: demand

pressure (caused by stock holders' hedging demands for equity options) and price impact (orig-

inated from option market makers' inventory risks). I provide evidence consistent with this

channel by showing that the option return predictability of HHI is positively related to each

component.

First, I directly check the demand pressure component by identifying mutual funds that

use equity options for hedging purpose. I construct HHI using a Morningstar dataset. This

4Bakshi and Kapadia (2003) �nd that delta-hedged option gain is closely related with volatility risk premium.
5In some exercises mentioned later, delta-hedged put returns show stronger negative relation with HHI than

other measures do. This is consistent with the fact that put is a more natural instrument than call when investors
want to hedge their long stock positions.
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dataset records not only stock holdings for U.S. equity mutual funds, but also their equity

option holdings, which are missing in S12. After classifying funds into di�erent categories based

on their long/short positions in puts/calls, I �nd that the negative predictability mainly comes

from funds that long puts. To further tell whether funds long puts to hedge their stock positions

or to speculate on downside information, I pair equity option positions with their underlying

stock names and classify long put positions into protective put and naked put. I �nd that the

main contributors for the negative e�ect of HHI are funds that use protective put strategy to

hedge their long positions in underlying stocks, but not those that use naked put to circumvent

short-sale constraints and speculate.

Second, I further check the demand pressure component by splitting mutual funds based on

whether they overweight or underweight the stock, because funds are supposed to have more

incentives to hedge their positions in a certain stock when they overweight, rather than under-

weight, the stock relative to their investment benchmarks. To test this conjecture, for a given

stock every quarter, I split its fund holders by whether they overweight or underweight the stock

based on their self-declared benchmarks. Then I construct HHI for the stock using the two groups

of funds, respectively. I �nd that the option return predictability of HHI is entirely driven by

funds that overweight the stock. This pattern is especially strong when I use delta-hedged put

return as the dependent variable, consistent with the fact that put option is more commonly

used for hedging than call.

Then I examine the price impact component. When price impacts are larger for some �rms'

options, HHI (if positively correlated with hedging demands) should be a stronger option return

predictor among those �rms, because a given level of option order imbalances would cause greater

price movements for those options. I test this conjecture by testing model predictions in GPP,

which show that price impact in option markets equals dealers' risk aversion times e�ective risk-

5



free rate times option unhedgeable risks.6 First, after splitting the sample into three sub-periods

by TED spreads, I �nd that the negative e�ect of HHI is stronger during the sub-period in

which intermediaries su�er tighter funding liquidity constraints and face greater e�ective risk-

free rates. This is expected because intermediaries, as option market makers, charge higher

compensation for bearing order imbalances when they are more constrained and risk averse.

Second, I construct three empirical proxies for the three sources of option unhedgeable risks.

At each month, I sort �rms into terciles based on the three proxies, respectively, and then run

Fama-MacBeth regressions within each tercile. I observe that HHI becomes a stronger predictor

among �rms whose options are more di�cult to hedge and thus have higher price impacts.

A limitation of using HHI as a proxy for stock holders' hedging demands is that it fails to

account for heterogeneous sizes of stock holders, which can break down the conjectured positive

relation between HHI and investors' hedging motives. If a �rm is held by a very large fund

and several small funds, the large fund will largely drive the HHI. HHI would be high even if

the large fund only invests a small portion of its portfolio in the stock. However, stock holders'

hedging motives can be low in this case, especially for the large fund. To �rst verify this concern,

I sort �rms into terciles by the kurtosis of their fund holders' total net assets at the end of each

quarter and run Fama-MacBeth regressions among each tercile. For a given �rm, if the kurtosis

of its fund holders' sizes is large, then HHI may not be a valid proxy for hedging demand and

should be a weak option return predictor. Empirically, I �nd this to be true. To �x the problem,

I construct a truncated HHI: Each quarter, I sort a given �rm's fund holders into quintiles by

their sizes and delete those in the highest quintile. Then I construct the �rm's HHI using the

fund holders that remain, whose sizes are less dispersed than before. In a horse race with the

non-truncated HHI, the truncated measure is superior in predicting the return of put but not

6GPP investigate three sources of option unhedgeable risks: stochastic volatility risk, jump risk, and delta-
hedging cost.
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call. Since put is more commonly used for hedging, this is supporting evidence that HHI can

be viewed as a hedging proxy and that accounting for heterogeneous sizes of stock holders can

further improve the proxy.

I also explore and rule out three alternative stories in which HHI predict option returns

through channels other than hedging. First, since �rms with smaller sizes or lower share pro-

portions held by mutual funds tend to be owned by fewer funds and thus have higher HHI, it is

natural to ask whether the option return predictability of HHI comes from its correlation with size

or share proportion. I use double sorts to control for �rm size and share proportion, respectively,

and I �nd that return spreads sorted by HHI remain highly signi�cant with similar magnitudes

for each size or share proportion quintile. Second, HHI may be related to stock holders' private

information on �rm fundamentals. Thus, it is possible that HHI predicts option returns through

an information channel by predicting future return or variance of the underlying stock. However,

I �nd evidence inconsistent with this story: In Fama-MacBeth regressions, HHI cannot predict

cross-sectional stock returns and variances. Third, HHI may predict option returns through its

relationship with short interest. When fewer funds own a �rm, it has lower breadth of ownership

and tends to have larger HHI. Chen, Hong, and Stein (2002) �nd that when breadth decreases,

short-sale constraint becomes binding. This will push up demands and prices for puts and lead

to low subsequent option returns. After I control for short interest and the change in breadth,

HHI remains highly signi�cant in predicting option returns.

An option strategy which sorts �rms into quintiles by HHI and forms a long-short portfolio

of their VIX returns generates a monthly Sharpe ratio of 0.4 and a risk-adjusted alpha of 6.87%

per month. Option bid-ask spreads greatly reduce strategy pro�ts. However, the impact can be

reduced under reasonable transaction cost management, such as forming portfolios with more

extreme HHI (deciles rather than quintiles) and discarding �rms whose option bid-ask spreads are
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higher than the median of each month. After the two measures, return spread using delta-hedged

put, to which HHI is the most strongly related, remains highly pro�table even after considering

full bid-ask spreads.

The rest of this paper is organized as follows. Section 2 describes data construction. Section

3 examines how HHI predicts cross-sectional option returns and proposes a hedging and demand

pressure channel to explain the predictability. Section 4 validates the channel. Section 5 dis-

cusses the limitation of using HHI as a proxy for hedging demand, evaluates the performance

of option strategies formed on HHI, and explores alternative explanations for the option return

predictability. Section 6 concludes.

2 Data

This section presents the data steps to construct VIX portfolio and HHI. I obtain option data

from the OptionMetrics Ivy DB database, which provides end-of-day bid-ask quotes on options

traded on U.S. exchanges. The sample period is from January 1996 to December 2019. I use

Thomson Reuters S12 and S34 databases, which include quarterly stock holdings of mutual funds

and 13f institutions, to construct HHI. To extract the information needed later in this paper,

I obtain information about stock returns and accounting data from CRSP and COMPUSTAT.

The common risk factors and risk-free rates are taken from Kenneth French's website.

2.1 VIX portfolio

I construct the VIX portfolio following Heston and Li (2020). Its payo� closely approximates

the realized variance of underlying stock return during the option holding period.7 Therefore,

the average return of VIX portfolio measures VRP.

7The detailed proof is in Appendix A. I de�ne realized variance as the sum of squared daily stock returns.
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The VIX portfolio of a stock is composed of two parts: a static position in a portfolio of OTM

options written on the stock and a daily-hedged position in the underlying stock. I construct

the option position following the CBOE White Paper8:

V (t, T ) = 2
∑
i

O(Ki, t, T )∆i

K2
i

, (1)

where: V (t, T ) is the time-t price of the option position maturing at T ; O(K, t, T ) represents the

time-t midpoint price of an OTM call or put with strike price Ki and expiration T ; Ki are the

available strikes of options written on the stock; ∆i are the distances between adjacent strikes.

Since the weight of each option is proportional to the inverse of K2
i , deeper OTM put will

have a larger weight in the portfolio. Also, VIX portfolio includes options from all moneynesses.9

Thus, regardless of the option moneyness institutional investors trade, their demand pressures

will be directly re�ected in the price of VIX portfolio. For example, a mutual fund could simply

buy an OTM put on Apple to hedge its long position in Apple stocks. Its demand directly pushes

up the price of put at that strike and therefore increases the price of Apple's VIX portfolio. An

indirect channel, according to Garleanu, Pedersen, and Poteshman (2008), is that the demand for

this OTM put can in�uence prices of options at all other strikes through correlated unhedgeable

risks. In other words, investors do not need to trade the exact VIX portfolio to a�ect its price.

To make the VIX index re�ect the volatility for the next 30 days, CBOE implements inter-

polation using near- and next-term options. This paper does not follow this standard. Instead,

I form the option position in VIX portfolio on the third Friday of each month (time t) and hold

options to maturity, which is the third Friday of the subsequent month (time T ). The return of

VIX portfolio is calculated at monthly frequency.

8https://cdn.cboe.com/resources/vix/vixwhite.pdf.
9Prices of out-of-the-money puts are linked with those of in-the-money calls by the put-call parity.
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By augmenting the static option position with a daily-hedged stock position, which requires

investors to borrow $1 at the risk-free rate and invest it in the stock for one day10, I get the VIX

portfolio whose return equals

rV IX(t, T ) =

V (T, T )− 2
(

S(T )
S(t)(1+rf )T−t − 1

)
+ 2

T∑
u=t+1

(r(u)− rf )

V (t, T )
− 1, (2)

where: V (T, T ) is the payo� of option position at expiration T ; S(t) is the stock price at time t;

rf is the daily risk-free interest rate; r(u) represents the stock return on day u, which is a day

between time t and T . I call rV IX(t, T ) VIX return.

In summary, to construct the VIX portfolio for a given �rm, an investor needs to: 1. take a

static option position formed at time t with price V (t, T ) and hold it until expiration T ; 2. short

a static hedged stock position with zero time-t price and a �nal payo� of 2( S(T )
S(t)(1+rf )T−t − 1) at

time T ; 3. take a daily-hedged stock position with zero time-t price and a payo� of 2(r(u)− rf )

on each day u during option holding period.

To construct VIX portfolios for all optionable �rms in OptionMetrics, I apply the following

�lters: (1) to avoid extremely small and illiquid stocks, underlying stock prices should be at least

$5, (2) delete �rm-month observations containing stock splits, (3) following Driessen, Maenhout,

and Vilkov (2009), I discard options with missing implied volatilities or deltas (which occurs

for options with nonstandard settlement or for options with intrinsic value above the current

midpoint prices), (4) delete options whose ask prices are lower than bid prices, (5) remove options

with zero open interest, in order to eliminate options with no liquidity, (6) �lter options following

the CBOE White Paper and get OTM puts and calls, (7) to further avoid microstructure-related

bias, I follow Cao and Han (2013) and delete options with zero bid prices and require midpoint

10This is a model-free delta hedge because the option position delivers a log-payo� as shown in the appendix,
whose delta is the inverse of stock price. This is equivalent to investing $1 in the stock.
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prices to be at least $0.125, (8) delete options whose prices violate arbitrage bounds, (9) require

at least two OTM puts and calls remaining on each side after applying the above �lters, and (10)

exclude a �rm-month observation if the underlying stock pays a dividend during the remaining

life of the option. Combined with the fact that I use short-term monthly options, early exercise

premia are supposed to be very low.

Table 1 presents summary statistics. There are 288 months from 1996 to 2019. The �nal

sample includes 199,648 �rm-month observations and 6,413 unique stocks. To pass the above

�lters, those stocks tend to be relatively large and to have liquid option markets. On average,

each month includes 693 stocks.11 I construct VIX portfolios for both individual �rms and the

S&P 500 Index. I call them equity and index VIX portfolios, respectively. Index VIX return

has a mean of -24.26% per month. The large negative average is consistent with the negative

VRP embedded in index options documented by Carr and Wu (2009) and Driessen, Maenhout,

and Vilkov (2009). The mean of equity VIX return is -8.24% per month. A more negative VIX

return indicates more expensive option prices.

Since I only use discrete strikes available to form VIX portfolio in (1), the portfolio payo� only

approximately equals realized variance.12 To gauge the tracking error, I compare VIX return in

(2) with variance swap return (VSR), de�ned following Carr and Wu (2009):

V SR(t, T ) =

T∑
u=t+1

r(u)2

V (t, T )
− 1. (3)

For the S&P 500 Index, the correlation between VIX return and VSR is 0.99. As indicated

in Figure 1, index VIX return closely tracks VSR during the sample period. Both of them tend

11My sample gives a larger cross-section than previous studies on VRP: Carr and Wu (2009) use �ve stock
indices and 35 individual stocks; Driessen, Maenhout, and Vilkov (2009) look at the VRP of the S&P 100 Index
and its constituent �rms; Duarte, Jones, and Wang (2019) use the S&P 500 Index and its constituent �rms.

12On average, equity VIX portfolio consists of 7.97 strikes. For index VIX portfolio, the average number of
strikes is 100.59.

11



to spike during market downturns, re�ecting the fact that variance contracts are hedging assets

with negative expected returns. Index VSR has an average of -24.73%, close to that of index

VIX return. For each �rm, I compute the correlation between its equity VIX return and VSR.13

The median correlation equals 0.93. Therefore, VIX return closely approximates VSR even at

the individual �rm level, for which fewer strikes are available than for index. Individual-�rm-

level approximation errors could be further diversi�ed away by forming portfolios: If I equally

weight �rms at each month, the time-series correlation between VIX return and VSR increases

to 0.96. Since most stocks have the same discrete intervals across strikes, the errors may be

di�erenced out if I form long-short portfolios. Overall, the evidence suggests that discrete strikes

have limited impact on using VIX return to measure VRP.

2.2 Delta-hedged option returns

In addition to VIX return, I construct delta-hedged option returns following Bakshi and Kapadia

(2003) as additional test assets. Speci�cally, I pick the put (or call) option14 closest to the current

stock price for each optionable stock on the third Friday of each month and hold it to expiration

(third Friday of the next month). Then I evaluate the return of a portfolio that longs the put

(or call), which is delta-hedged daily with the underlying stock using the delta computed by

OptionMetrics.15 By calculating delta-hedged returns for at-the-money (ATM) put and call

separately, I can examine the relative e�ects HHI exert on the pricing of put and call in some

sanity checks performed later. If HHI is correlated with investors' hedging demand for options,

it should have a larger impact on put than on call, given that put is more commonly used for

hedging.16

13To obtain accurate correlations, I require �rms to have at least 30 observations in this exercise. There are
1,976 �rms that meet this requirement.

14I require the put and call to have the same strike price.
15In some days, the delta is missing in the OptionMetrics. When this occurs, I impute a delta using the most

recent non-missing implied volatility for the same option contract.
16HHI could still in�uence the price of call indirectly through the put-call parity.
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To measure delta-hedged option returns, I �rst de�ne delta-hedged gains for put and call

over a period [t, T ] following Bakshi and Kapadia (2003) and Cao and Han (2013):

ΠP (t, T ) = PT − Pt −
N−1∑
n=0

△P,tn [S(tn+1)− S(tn)]−
N−1∑
n=0

anrf,tn
365

[P (tn)−△P,tnS(tn)],

ΠC(t, T ) = CT − Ct −
N−1∑
n=0

△C,tn [S(tn+1)− S(tn)]−
N−1∑
n=0

anrf,tn
365

[C(tn)−△C,tnS(tn)],

where: the hedge is rebalanced at each of the dates tn, n = 0, 1, ..., N − 1, with t0 = t, tN = T ;

△P,tn (△C,tn) is the delta of the put (call) on date tn; an is the number of calendar days between

tn and tn+1. Bakshi and Kapadia (2003) show the close link between delta-hedged gains and

volatility risk premium.

To compare across stocks, I scale ΠP (t, T ) and ΠC(t, T ) by the absolute value of portfolios,

Pt−△P,tSt and △C,tSt−Ct, respectively. The delta-hedged put (call) return for �rm i is denoted

as:

rPut
i,t,T =

ΠP (t, T )

Pt −△P,tSt
,

rCall
i,t,T =

ΠC(t, T )

△C,tSt − Ct
.

I calculate delta-hedged option returns for �rm-months with stock prices of at least $5 and

with no stock splits or dividend issues. There are 445,514 �rm-month observations from January

1996 to December 2019. This is much larger than the number of VIX returns because I only

require one liquid ATM option to calculate rPut and rCall. To avoid the complication from

compounding di�erent sample sizes with di�erent ways to measure option returns, I restrict the

sample to observations with rV IX , rPut, and rCall available at the same time. The �nal sample

includes 199,648 observations.
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Table 1 presents statistics of delta-hedged option returns. rPut (rCall) has an average of

−0.7% (−0.44%) per month, consistent with the negative variance risk premium documented

by VIX return and previous studies. Due to di�erent scalings, delta-hedged option return has

a smaller mean and standard deviation than VIX return in absolute value. Therefore, when

I use them as dependent variables in later sections, regression coe�cients will have di�erent

magnitudes.

2.3 Her�ndahl-Hirschman Index (HHI)

HHI is a widely used concentration measure in economics literature. Compared with the share

proportion of a �rm owned by institutional investors, HHI is a potentially better measure for

hedging demand because it better captures how risks from the underlying stock are distributed

among stock holders. Share proportion simply aggregates institutional holdings without consid-

ering the number of stock holders and relative sizes of their stock positions.

I �rst use the Thomson Reuters S12 database to construct an individual-mutual-fund-level

HHI. S12 includes all registered domestic mutual funds �ling with the SEC and records their

equity holdings at quarterly frequency. Then I construct a more aggregate level HHI using the

S34 database, which covers the quarterly equity holdings of entire investment companies, often

called 13f institutions. S12 and S34 di�er in their levels of granularity: S12 records stock holdings

of individual mutual funds, while S34 aggregates holdings of funds under the same family and

reports as a single entity. For example, Fidelity reports as a single entity and aggregates the

holdings of all funds and trusts that it manages into its quarterly 13f �lings, whose information

would be included in S34. Fidelity also reports holdings of its individual funds, whose information

is included in S12. In addition to mutual funds, S34 covers stock holdings of other 13f institutions,

such as insurance companies, pension funds, endowments, and hedge funds. Therefore, S34 has a

broader coverage but less granularity than S12. Neither S12 nor S34 records any short positions.
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For a given �rm at a certain quarter, I construct its mutual-fund-level HHI as follows: First,

delete observations whose �le date and report date are not in the same quarter, in order to avoid

stale reports; Second, delete observations with missing fund total net assets; Third, calculate the

�rm's total number of shares owned by all mutual funds and use it to divide the share owned

by each fund; Fourth, calculate the �rm's HHI as the sum of squared share proportion owned by

each fund n:

HHI Mutual Fund =
N∑
n

(
Firm′s Shares Owned by Fund n

Firm′s Total Shares Owned by Mutual Funds

)2

,

where N is the total number of funds that hold the �rm's stock. The 13f-institution-level HHI

can be calculated in the same method using S34. By construction, HHI takes value in [ 1N , 1]:

When it equals 1, the �rm is owned by only one fund, which is the most concentrated ownership;

When it equals 1
N , each fund holder owns equal share of the �rm, which is the least concentrated

ownership.

Panel B in Table 1 reports summary statistics of HHI. For a given �rm-month, I �nd its latest

available HHI. The fund-level HHI has a mean of 0.154, higher than that of the institution-level

HHI (0.067). It has a standard deviation of 0.22, more variable than that of the institution-level

measure (0.081). In later sections, in order to further tell which types of mutual funds may

use equity options for hedging purpose, I use di�erent subsets of funds to construct HHI. The

statistics for di�erent versions of HHI are presented in Table A1.

3 HHI and the Cross-Section of Option Returns

This section examines how HHI predicts cross-sectional option returns, including equity VIX

returns and delta-hedged put and call returns. I conjecture that HHI are positively correlated

with stock holders' hedging demands for equity options and negatively predict option returns
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through a hedging and demand pressure channel as follows: For a �rm with high HHI, its stocks

are concentrated among a few large holders, who are likely to place a large share of their wealth

in this single �rm. Therefore, those holders tend to have high hedging demands for the �rm's

options. To absorb the order imbalances, option market markers charge higher prices, which lead

to lower subsequent option returns.

3.1 Option return predictability of HHI

This section explores the cross-sectional option return predictability of both the mutual-fund-

level and 13f-institution-level HHI. There is a trade-o� between the granularity and coverage

of the two measures: Since star fund tends to get the most subsidization allocated from the

family (Gaspar, Massa, and Matos (2006)), fund managers within the same family compete with

each other in a tournament (Kempf and Ruenzi (2008)). Therefore, when fund managers make

hedging decisions, they have incentives to put more weights on their own fund holdings than on

the net holdings of the family. In this sense, fund-level HHI is a better proxy for hedging demand

than institution-level HHI. On the other hand, institution-level HHI has broader coverage in that

it includes 13f institutions other than mutual funds, which can make it a better hedging proxy

than fund-level HHI.

I run a monthly Fama and MacBeth (1973) regression,

ri,t+1 = αt + γtHHIi,t + ϵi,t+1,

to examine the predictability of HHI on one-month-ahead option returns. For robustness, I

use three measures for the option return of �rm i at month t + 1: equity VIX return (rV IX
i,t+1),

delta-hedged put return (rPut
i,t+1), and delta-hedged call return (rCall

i,t+1).
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Table 2 reports time-series averages of coe�cients, together with their t-statistics corrected

for heteroskedasticity and autocorrelation following Newey and West (1987) using three lags.

Both fund-level and institution-level HHI negatively predict all three measures of option returns,

regardless of whether they are used alone as a predictor or together. When fund-level HHI is

used alone in Column (1), its average coe�cient estimate is −0.156, with a t-statistic of −5.57.

One standard deviation increase in HHI (0.22) decreases VIX return by 3.43% per month. The

negative sign is consistent with the prediction from the hedging and demand-pressure story.

GPP document a net short position of end-users in equity option markets. Lakonishok, Lee,

Pearson, and Poteshman (2007) �nd that directional hedging accounts for a small fraction of

trading in equity option markets. Their results are documented on an aggregate level by pooling

all �rms together and suggest that hedging demand is not the key factor in determining the

overall level of activity in equity option markets.17 However, there may exist heterogeneities in

hedging demands across �rms, which can a�ect cross-sectional option returns.

The opaqueness of option end-users' positions in underlying stocks is a big obstacle to identi-

fying option order �ows submitted for hedging purposes. Intuitively, hedging demands for options

should come from major holders of underlying stocks, who are �nancial institutions in the case

of the U.S. equity market. Since U.S. registered investment companies are required to disclose

their holdings every quarter and they are fairly sophisticated investors who may use options, I

start from S12 and S34 databases. I conjecture that HHI constructed from institutional positions

in underlying stocks are positively correlated with their hedging demands for equity options and

use HHI as a hedging proxy.

17The following studies focus on how investor sentiment may a�ect option prices: Han (2008) examines how
market sentiment a�ects index option expensiveness; Lemmon and Ni (2014) explore how individual investor
sentiment a�ects demand and expensiveness for equity options on an aggregate level.
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3.2 Robustness checks

This section checks whether the e�ect of HHI remains robust after controlling for other option

return predictors and stock characteristics. I also explore the possibility that HHI predicts

option returns through an information channel by predicting future returns or variances of the

underlying stocks.

Control variables include option return predictors documented by previous studies.18 Follow-

ing Schürho� and Ziegler (2011), I calculate holdings of mutual fund (institution) as the �rm's

total stock shares held by all mutual funds (institutions) divided by its total number of shares

outstanding. This is essentially the share proportion of the �rm held by mutual funds (insti-

tutions). I construct idiosyncratic volatility (IVOL) following Cao and Han (2013). Goyal and

Saretto (2009) �nd that the log di�erence between historical realized volatility and ATM implied

volatility predicts cross-sectional option returns. Their option portfolios consist of only ATM

options. Since VIX portfolio includes options from all moneynesses, I modify their measure and

replace ATM implied volatility with VIX. I call the measure HV −V IX. I follow Vasquez (2017)

to construct the slope of implied volatility term structures (IV Term Spread). The risk-neutral

skewness of stock return (RN Skew) is computed following Bakshi, Kapadia, and Madan (2003).

It is a measure for jump risk and is closely related to the slope of the implied volatility curve. I

use the percentage bid-ask spread of the option portfolio to measure option liquidity. In addition

to these option return predictors, I also include well-known stock characteristics associated with

underlying stock returns including beta, size (Ln(ME)), book-to-market (Ln(BM)), short-term

stock return reversal (RETt−1,t), stock return momentum (RETt−12,t−1), and Amihud illiquidity

measure (Amihud).

18Detailed constructions for all control variables used in this paper can be found in Appendix B. Summary
statistics of control variables are in Table A1.
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Table 3 reports results of Fama-MacBeth regressions:

ri,t+1 = αt + γtHHIi,t + θtControlsi,t + ϵi,t+1.

In Columns (1) and (2), fund- and institution-level HHI both remain signi�cant after controls.

The coe�cient and t-statistic of fund-level measure barely change after controlling for other

predictors, but those of institution-level HHI almost halve. When I include both measures in

Column (3), the coe�cient of fund-level HHI remains highly signi�cant with a t-statistic of −4.46.

However, institution-level HHI becomes insigni�cant in predicting rV IX . This pattern remains

the same when I use HHI to predict rCall in Column (5). When I use rPut as the dependent

variable in Column (4), institution-level HHI remains signi�cant but its t-statistic is only half of

that of the fund-level measure. The overall evidence suggests that fund-level HHI constructed

from the more granular level ownership data in S12 is a better proxy than the institution-level

measure. Therefore, the rest of this paper will only focus on the mutual-fund-level measure.

Hereafter, I will call the fund-level HHI just HHI for simplicity.

Next, I explore the possibility that the option return predictability of HHI comes from its

ability to predict the future return or variance of the underlying stock. In Column (6) and (7),

I run Fama-MacBeth regressions and use one-month-ahead stock returns (rStocki,t+1 ) and variances

(RV Stock
i,t+1 ) as dependent variables, respectively. The coe�cients of HHI are close to zero and

insigni�cant. Therefore, it is implausible that HHI contains information about future stock

returns or variances.

4 Tests for the Hedging and Demand Pressure Channel

This section provides tests for the hedging and demand pressure channel in which HHI predicts

option returns through its positive correlation with stock holders' hedging demands for equity
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options, which push up option prices and decrease returns on options. This channel consists of

two necessary components: demand pressure and price impact in option market, which imply

that the option return predictability of HHI should be positively related to each of them:

Predictability of HHI ∝ d︸︷︷︸
Demand Pressure

× ∂p

∂d︸︷︷︸
Price Impact

.

Section 4.1 and 4.2 below focus on the demand pressure component by identifying funds whose

hedging demands may cause option order imbalances and by showing that they are the main

contributors to the negative return predictability. Section 4.3 focuses on the price impact com-

ponent by examining whether HHI becomes a stronger option return predictor when options

become more costly to hedge and prices are more sensitive to order imbalances.

Nearly 80% of mutual funds have investment policies that allow the use of equity options (Deli

and Varma (2002) and Deli, Hanouna, Stahel, Tang, and Yost (2015)). To identify mutual funds

that actually trade equity options, I use a Morningstar dataset recording not only stock holdings

for U.S. equity mutual funds but also derivatives holdings, which are missing in S12.19 20 This

dataset ends in June 2015. In Section 4.1 and 4.2 below, I construct HHI using stock holdings in

this dataset and match them with option returns whose formation dates end in September 2015,

one quarter after the end of the dataset.

4.1 Funds that trade equity options for hedging

This section examines whether the option return predictability of HHI comes from mutual funds

that trade equity options for hedging purposes. I identify those funds based on their equity

option positions. I start the Morningstar dataset from January 1995, one year before the earliest

19I am indebted to David Hunter for sharing this dataset. It is used in his paper Hunter (2015): �Mind the
Gap: The Portfolio E�ects of `Other' Holdings�.

20The dataset also includes short stock positions of mutual funds, which only account for 0.24% of the total
holdings observations. I delete them when constructing HHI.
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available option returns, in order to construct the HHI matched with returns in the �rst quarter

of year 1996. The dataset covers 4,387 funds during the period from January 1995 to June 2015.

An important advantage of the Morningstar dataset over S12 is that it records non-stock

holdings, including options. Funds report the market value of option positions. A positive

(negative) value means a long (short) position. This allows me to identify funds taking long

or short positions on equity options. Combined with their positions in underlying stocks, I can

explore whether they use options to hedge based on the nature of option strategies. However,

a challenge is that funds report option holdings in a nonstandard way because of the lack of a

standard requirement from SEC when it comes to the reporting of derivatives holdings: First,

unlike stock holdings, most of option holdings reported do not have common identi�ers like

CUSIP, which makes it impossible to directly link option positions with their underlying stocks.

Second, names of underlying �rms are included in the security name item for option holdings.

However, funds abbreviate underlying �rms' names in an arbitrary way, and sometimes funds use

tickers instead of names, which makes the matching with underlying �rms more di�cult. Lastly,

funds usually do not report important characteristics of option contracts other than it is a call

or put. Thus, it is impossible to tell the moneynesses and maturities of options. VIX portfolio

consists of options from all moneynesses, which could partially alleviate this concern.

To extract option holdings, I follow procedures used in Cici and Palacios (2015): I begin

by using the security names of fund holdings as the main input and identify observations that

contain the �Call� or �Put� text strings in the names.21 Next, I use visual inspection to remove

misclassi�cations. Some observations contain the above text strings but are not option holdings,

such as �Output�, �Computer�. To focus on options written on individual stocks, I exclude index

21Funds can be arbitrary in capitalizations and spelling: In addition to �Call�, they can write �CALL�, �call�,
�Calloption�, etc. The same is true for put options. I also consider these variants in the search.
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options. The �nal sample identi�es 607 funds that utilized equity options at least once during

the sample period. With a little abuse of terminology, I call them option funds.

Ideally, I would identify option funds at each month based on their option holdings during

the past quarter. This would precisely identify which fund causes demand pressure in which

�rm's option market. However, the short-lived nature of options makes this di�cult: Since fund

holdings are observed at the end of each quarter, option holdings would be unobservable if they

have short maturities such that they expire before the quarter end. Also, funds may deliberately

liquidate their option positions before quarter-end reporting if they want to hide their strategies

from competitors and investors or if they are concerned about the potential negative publicity

associated with derivatives use. Therefore, I employ the above indicator variables to measure

option use, following the standard in this literature.22 However, both reasons can still lead to

an underestimation on the number of option funds. Thus, the result in this section is a lower

bound for the number of option funds.

Next, I split option funds into put fund, if a fund uses put during the sample period, and call

fund, if a fund only uses call but never uses put. If a fund uses both put and call, it would be

classi�ed as a put fund. The union of put funds and call funds equals option funds. There are

343 put funds and 264 call funds.

I further split put funds into long put fund, if a fund takes any long position on put during

the sample period, and short put fund, if a fund only takes short position on put but never takes

any long position. There are 243 long put funds and 100 short put funds. I split call funds in

the same way based on their long/short positions on call. There are 111 long call funds and 153

short call funds.

22See Koski and Ponti� (1999), Cici and Palacios (2015), Cao, Ghysels, and Hatheway (2011), Chen (2011),
Deli and Varma (2002), and Almazan, Brown, Carlson, and Chapman (2004).
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I construct di�erent versions of HHI using funds in the above categories, respectively, and use

them to predict cross-sectional rV IX .23 Table 4 reports the results. In Columns (1) and (2), HHI

of option funds negatively predicts option returns and after controlling for it, HHI constructed

from all Morningstar funds, including those which do not use equity options, becomes only

marginally signi�cant.24 This is expected because option funds are the ones that cause demand

pressures in option markets. Columns (3) and (4) suggest that among option funds, it is put

funds that drive the negative option return predictability. They are more likely to use options

for hedging than call funds. After controlling for HHI of put funds, HHI of option funds loses

signi�cance. HHI of call funds has a weakly positive relation with option returns. A possible

explanation is that many call funds specialize in covered-call strategy, which sells calls, pushes

down option prices, and leads to higher subsequent option returns. After I take into consideration

the long/short positions on put and call in Column (5), it becomes clear that long put funds

are the main driver for the negative return predictability. All the above results remain the same

with similar magnitudes after I control for other option return predictors in Table A2.25

Funds may long put for speculation rather than hedging. Investors can use naked put strategy

to bypass the short-sales constraint and speculate on negative news of a �rm. Johnson and So

(2012) argue that �the costs associated with short-selling make informed traders more likely to

use options for bad signals than for good ones�.26 I take a further look at long put funds and

examine whether they long put for hedging by combining their long positions on puts with those

on the underlying stocks.

23For example, HHI Put Fund =
∑N

n

(
Firm′s Shares Owned by Put Fund n

Firm′s Total Shares Owned by Put Funds

)2

.
24HHI MStar becomes insigni�cant after I control for other option return predictors in Table A2.
25An exception is that the coe�cient of the HHI for short put funds becomes signi�cant. However, the result

is not robust as the coe�cient becomes insigni�cant again if I use rPut and rCall as dependent variables.
26Other related studies include Ofek, Richardson, and Whitelaw (2004), Evans, Geczy, Musto, and Reed (2009),

Muravyev, Pearson, and Pollet (2018), Jones, Mo, and Wang (2018), and Khorram, Mo, and Sanger (2019).
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First, I link equity option positions with the names of underlying �rms. Due to the lack of

common identi�ers and arbitrary abbreviations of �rm names discussed before, an easy and direct

matching process is unavailable. I use a name-matching algorithm based on spelling distance to

match security names with �rm names. Then I use visual inspections to pick observations in

which funds report tickers instead of �rm names and match those security names with the �rm

tickers. In the last step, I do visual inspections again to �lter out mismatches. After the above

steps, 97% of equity option positions can be matched with the names and thus CUSIPs of their

underlying �rms.

Second, I identify the reason why funds long puts. If a fund takes a long position on the

underlying stock at the same quarter, the long position on put is classi�ed as protective put and

the fund longs put for hedging in this case. If a fund does not take any position on the underlying

stock at that quarter, the put position is classi�ed as naked put. There are 135 (83) funds which

used protective (naked) put strategy during the sample period. I construct HHI using the two

groups of funds and use them to predict rV IX .

Column (6) in Table 4 shows that funds that use protective put strategy for hedging purposes

largely drive the negative return predictability. HHI of funds using naked put for speculation is

not signi�cant in predicting option returns. The pattern remains the same after I include other

control variables in Table A2.

It is tempting to argue that a measure constructed directly from mutual fund option positions

is more direct and superior in gauging option demands than the HHI formed from underlying

stock positions. This is not necessarily true for two reasons. First, unlike stocks, options written

on the same �rm are heterogeneous assets in terms of moneynesses and expirations. Since mutual

funds do not report those characteristics, it is impossible to construct a well-de�ned measure using

homogeneous assets in option markets in the way that I construct HHI for a stock. Second, a
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measure constructed using only option positions without considering end-users' contemporaneous

positions in the underlying stocks cannot di�erentiate hedging from speculating purpose.

The last part of this section examines how long the option return predictability of HHI

persists. I use the n-month-lagged HHI of funds using protective put to predict rV IX in a

Fama-MacBeth regression, controlling for option return predictors used in Column (1) of Table

3. Speci�cally, I require that the formation date of the �rm's VIX portfolio is at least n-month

ahead of the construction date of the �rm's HHI, with n taking values from 1 to 12.

Figure 2 plots the coe�cient estimates of HHI (solid blue line) and their 95% con�dence

intervals (dashed yellow lines) with respect to month lags. The coe�cients remain signi�cant for

up to three months. This means that the predictability persists no longer than two quarters: If

we were to predict rV IX formed on the third Friday of August, the 3-month-lagged HHI must

be constructed no later than the end of May. In this example, the latest available HHI are those

calculated in March, two quarters before August.

The coe�cients of HHI become insigni�cant beyond three months but stay negative. This

is di�erent from the demand pressure e�ect in stock market, which is typically followed by a

reversal of signs because of the reversal in demands. The reason is that after monthly options

expire, there will be no reversal in their demands. Thus, the demand pressure e�ect in option

markets does not switch signs in predicting option returns over di�erent horizons.

To summarize, this section shows that the option return predictability of HHI comes from

funds that long put for hedging purposes and that the e�ect persists no longer than two quarters.

4.2 Overweight vs. Underweight

When a mutual fund overweights a stock relative to its investment benchmark, the fund has

more incentives to hedge its position on this stock than when it underweights the stock. The
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hedging motives may come from fund manager's career concern as discussed in Cohen, Polk,

and Silli (2010): A heavy bet on a small number of positions can, in the presence of bad luck,

cause the manager to lose her job and the manager tends to be more risk averse. Also, the bad

performance of the overweighted stock could lead to the under-performance of the fund relative

to its benchmark or peers, which can cause out�ows from the fund and decrease the manager's

compensation. Therefore, for a given stock, the hedging demand for its options should mainly

come from the subset of funds that overweight it. If HHI is a proxy for hedging demand, its

option return predictability should come from funds that overweight the stock but not from those

that underweight.

To test this conjecture, I construct two versions of HHI using two subsets of funds classi�ed

by whether they overweight or underweight the �rm relative to their benchmarks. Then I use

the two HHI to predict cross-sectional option returns.

I �rst download the self-declared benchmarks of mutual funds from the Morningstar Direct

platform. I pick a total of 20 indices from two families: S&P/Barra and Russell. The S&P/Barra

indices I pick are the S&P 500, S&P 500/Barra Growth, S&P500/BarraValue, S&PMidCap 400,

and S&PSmallCap 600. The Russell indices I pick are the Russell 1000, Russell 2000, Russell

2500, Russell 3000, and Russell Midcap, plus their value and growth components. For bench-

marks in the Russell family, I obtain their compositions and weights of stocks from Financial

Times Stock Exchange (FTSE) Russell index holdings data, which is available in Wharton Re-

search Data Services (WRDS). To proxy for the weights of constituent stocks in benchmarks

from the S&P family, I use the portfolio holdings of iShares ETFs collected from S12.27 Holdings

data of iShares ETFs becomes available starting from December 31st, 2000. Due to this data

availability, I look at option returns from January 2001 to September 2015 in this section. I can

27As of July 2020, S&P Dow Jones Indices constituent name data became licensed content and was removed
from Compustat. This is why I use holdings of ETFs as proxies for the S&P family.
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match 3,131 out of 4,365 funds covered during this sample period with benchmarks from the

above 20 indices.

For a given �rm at each quarter, I can then tell which funds overweight/underweight it. I

construct a �rm's HHI using only the holdings of funds which overweight (underweight) it and

call it HHI Overweight (Underweight).28 In addition, I use all funds in the Morningstar dataset

to construct HHI and call it HHI MStar. The three versions of HHI are used to predict option

returns in Fama-MacBeth regressions.

Table 5 reports results. HHI MStar negatively predicts cross-sectional option returns. After I

split funds based on whether they overweight or underweight the stock, the negative predictability

comes entirely from funds that overweight the stock.29 This pattern is especially strong when I

use rPut as the dependent variable, which is consistent with the fact that put is more commonly

used for hedging than call. After I control for other option return predictors in Table A3, all

results above remain the same qualitatively.

Another possible candidate proxy for hedging demand is the share proportion of a �rm

overweighted by mutual funds.30 To compare this measure with HHI, I construct it as follows:

First, for stock i at month t, I calculate the dollar amount fund j invests in the stock in excess

of its own benchmark:

AUMj,t ×max(wi,j,t − w
Benchmarkj
i,t , 0),

where: AUMj,t is the asset under management of fund j at month t; wi,j,t is the weight of stock

i in fund j's portfolio at month t; w
Benchmarkj
i,t is the weight of stock i in fund j's benchmark at

month t. Second, I sum across funds holding stock i and scale the summation using the market

28HHI Overweight =
∑N

n

(
Firm′s Shares Owned by Overweight Fund n

Firm′s Total Shares Owned by Overweight Funds

)2

.
29Even though HHI Underweight is marginally signi�cant in predicting rPut, it becomes insigni�cant after I

control for other option return predictors in Table A3.
30I thank Neil Pearson for suggesting this possibility.
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cap of stock i at month t. I call this measure �Proportion Overweight� and use it to predict

cross-sectional option returns.

Table A4 in the appendix presents regression results. Used alone as a predictor, Proportion

Overweight positively predicts rPut and rCall. It loses signi�cance after I control for HHI and

other predictors, while the coe�cient of HHI Overweight barely changes from Table A3. As

mentioned before, HHI can be a better hedging proxy and thus a better option return predictor

than share proportion, because it considers relative sizes of stock holders' positions and captures

how risks from underlying stocks are distributed among them.

4.3 Price impact in option markets

Garleanu, Pedersen, and Poteshman (2008) (GPP) give an explicit characterization of the price

impact in option markets:

∂p

∂d
= γ(Rf − 1)×Option Unhedgeable Risk,

where γ is option dealer's risk aversion and Rf is the risk-free rate. They consider three forms

of option unhedgeable risks: stochastic volatility risk,31 jump risk, and delta-hedging cost. If

the hedging and demand pressure channel is accurate, HHI should be a stronger option return

predictor when price impact is larger, because a given level of order imbalances could cause

greater option price movements.

I test two hypotheses derived from the model in GPP: 1. The e�ect of HHI is stronger during

periods in which TED spreads are higher. This is because TED spread is positively related

to intermediaries' funding liquidity constraint. When TED spread increases, intermediaries as

option market makers become more risk averse and face higher e�ective risk-free rate, which

31A large literature studies how stochastic volatility a�ects option pricing and explains the negatively sloped
implied volatility curve. Some examples are Bakshi, Cao, and Chen (1997), Bates (2000), Heston (1993), and
Heston and Nandi (2000)
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leads to a larger price impact. 2. The predictability of HHI is stronger among stocks with higher

stochastic volatility risk, jump risk, and delta-hedging cost. Since options written on those stocks

are more di�cult to hedge, price impacts are larger among those stocks.

To test Hypothesis 1, I split the sample into three sub-periods (Low, Medium, and High) based

on the level of TED spread on the third Friday of each month.32 I run Fama-MacBeth regressions,

ri,t+1 = αt + γtHHIi,t + θtControlsi,t + ϵi,t+1, among each sub-period. For robustness, I use

rV IX , rPut, and rCall as the dependent variable, respectively. Controls include option return

predictors in Column (1) of Table 3. In this section, I construct HHI using S12. I report the

coe�cients of HHI in the �rst row of Table 6. As TED spread increases, the coe�cient becomes

more negative and signi�cant for all three measures of option returns. This pattern is consistent

with Hypothesis 1.

To test Hypothesis 2, I sort �rms into three subgroups (Low, Medium, and High) at each

month by empirical proxies corresponding to the three forms of unhedgeable risks, respectively.

Among each subgroup of �rms, I then run the same Fama-MacBeth regressions as above and

report the coe�cients of HHI.

In order to �nd a proxy for stochastic volatility risk, I estimate the following EGARCH(1,1)

model for each �rm on the third Friday of each month using past-year daily stock returns:

rt = σtzt; lnσ
2
t = ω + αr2t−1 + βlnσ2

t−1 + γ[|zt−1| − (
2

π
)
1
2 ],

where rt is the stock return, σt is the conditional volatility, and zt is the innovation term. I

set the maximum number of iterations as 500, and 97% of cases successfully converge. After

I generate a series of time-varying volatility levels for each day in the estimation window, I

calculate the volatility of those model-implied volatilities for each �rm every month and use it as

32Data for TED spread is taken from the website of Federal Reserve Bank of St.Louis.
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the proxy for stochastic volatility risk. Following Tian and Wu (2021), I use kurtosis to measure

jump intensity. I estimate kurtosis on the third Friday of each month using rolling-one-year daily

stock returns. To measure delta-hedging cost, I follow Tian and Wu (2021) and compute the

ratio of the stock return variance (σ2
i,t) uncorrelated with the market to the average daily dollar

trading volume (DVi,t, in millions) over the past year as follows:

σ2
i,t(1− ρ2i,t)/DVi,t,

where ρi,t is the correlation between returns of stock i and S&P 500 Index, calculated using

past-year daily data. When the return of an individual stock is highly correlated with the

market, dealers can use the highly liquid index futures to hedge the directional exposure. The

idiosyncratic return variance is used to capture the portion of risk that needs to be hedged with

the underlying stock.

Table 6 reports the coe�cients of HHI for each subgroup sorted by the above three proxies,

respectively. When the level of each unhedgeable risk in each row increases from Low to High,

the coe�cient becomes more negative and signi�cant. This trend is especially strong when I

use rPut as the dependent variable, consistent with HHI being a proxy for hedging demands on

put option. Overall, �ndings show that HHI is a stronger option return predictor when options

become more costly to hedge, consistent with Hypothesis 2.

5 Limitation, Strategy Performance, and Alternative Stories

This section discusses the limitation of HHI as a hedging proxy, i.e. when its positive relationship

with hedging demand may break down. I propose an improved version of HHI to address this

limitation. I also examine the performance of option strategies formed by HHI and evaluate the
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impact of transaction cost such as option bid-ask spreads. Two alternative explanations for why

HHI predicts option returns are also explored and ruled out.

5.1 Limitation: Heterogeneous sizes of stock holders

A limitation of using HHI as a proxy for hedging demand is that it fails to account for hetero-

geneous sizes of a �rm's stock holders.33 HHI can be easily driven by a very large fund into a

direction that is irrelevant, or even negatively correlated, with hedging demand. Assume that in

Scenario 1, a �rm is held by two funds, one with $100 million asset under management and one

with $10 billion. Each of these funds invest 1% of their wealth in the �rm's stocks. In Scenario

2, the �rm is held by two funds, both of which have $5 billion asset under management and 1%

of their wealth invested in the �rm. HHI in Scenario 1 is larger than that in Scenario 2, but

hedging demands in the two scenarios are not intuitively di�erent. If the larger fund in Scenario

1 underweights the stock relative to its benchmark, HHI would be even negatively related to

hedging demand.

If the hedging channel is correct, HHI should be a less valid hedging proxy and a weaker

option return predictor among �rms whose mutual fund holders are more dispersed in terms of

asset sizes. To verify this conjecture, I construct HHI using S12, which records total net assets of

mutual funds.34 For a given �rm at the end of the quarter, I calculate the kurtosis of fund holders'

total net assets and use it to measure how dispersed fund holders' sizes are. To calculate kurtosis,

I restrict the sample to �rm-months with at least �ve holders. Then I sort �rms into terciles

(Low, Medium, High) by their latest available kurtosis and run the Fama-MacBeth regression,

ri,t+1 = αt + γtHHIi,t + θtControlsi,t + ϵi,t+1, among each tercile. I use rV IX , rPut, and rCall

as the dependent variable, respectively.

33I thank Christopher Jones for raising this issue.
34Item �ASSETS� in S12.
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Panel A of Table 7 reports the coe�cient of HHI for each subgroup. The coe�cients are

similar across terciles when I use rV IX as the dependent variable. When I use rPut and rCall

as dependent variables, HHI does not signi�cantly predict option returns among the group of

�rms with high kurtosis. This is consistent with the conjecture that HHI is not a valid hedging

proxy when there are large dispersions among stock holders' sizes. When kurtosis decreases, the

coe�cient of HHI becomes more signi�cant.

To alleviate the bias caused by large funds, I construct a truncated version of HHI:35 For

a given �rm every quarter, I sort its fund holders into quintiles by their total net assets and

delete those in the highest quintile. Then I construct HHI using funds left, whose sizes are less

dispersed than before. I use both the non-truncated and truncated HHI to predict option returns

with controls.36

Panel B of Table 7 reports regression results. When used alone, both HHI negatively predict

option returns after controls. After I include both of them in one regression, the truncated HHI

is superior in predicting rPut in Column (6) with the coe�cient estimate and t-statistic twice as

much as those of the non-truncated measure. In contrast, when I use them to predict rCall in

Column (9), the truncated HHI becomes only weakly signi�cant at the 10% level and the non-

truncated measure remains highly signi�cant. Again, given the popularity of put as a hedging

instrument, this is supporting evidence that HHI can be viewed as a hedging proxy and that

accounting for heterogeneous sizes of stock holders can further improve the proxy.

35I still focus on �rms with at least �ve mutual fund holders.
36The non-truncated HHI is the one used in Panel A of Table 7.
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5.2 Strategy performance and transaction cost

This section examines the performance of option strategies formed on HHI. Since bid-ask spreads

are large in option markets, I also evaluate how transaction costs impact the pro�tabilities of

these strategies.

At each month, I sort �rms into quintiles by −HHI and equally weight them. I sort by

negative HHI in order to generate an increasing pattern of returns only for illustration purposes.

Portfolio returns are computed using rV IX , rPut, and rCall, respectively. Alpha is controlled for

Fama and French (2015) �ve factors, stock momentum, and S&P 500 Index VIX return in excess

of risk-free rate.

Panel A in Table 8 presents average monthly returns. Quintile option return decreases as

HHI increases. A long-short trading strategy using rV IX generates a monthly return of 6.85%.

After controlling for risk factors, the alpha, 6.87%, is similar to the raw return. The monthly

Sharpe Ratio is 0.4. Patterns remain the same when I trade rPut and rCall. Sharpe ratio is

especially large for rPut, which is not surprising given that HHI is especially strong in predicting

put returns.

Figure 3 plots the time-series of monthly returns for the above three strategies. The pro�ts

are especially high during the early sample period up until 2001, due to a combination of low

option market liquidity and overall market uncertainties like the collapse of Long Term Capital

Management and of the Dotcom Bubble. As option markets have become more liquid and

market-making costs decrease over time, the overall magnitude of pro�ts have become smaller

than the early period. However, the returns remain positive most of the time, especially for

rPut.37

37When trading rV IX , there is a large drawdown at early 2018 during the XIV Meltdown. This is likely due to
the approximation error between rV IX and rV SR, because this drawdown disappears when investors trade rPut

and rCall.
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The above results assume that options can be bought and sold at the midpoint of bid and ask

quotes. To evaluate how option bid-ask spreads could impact pro�ts, I consider e�ective spreads

equal to 25%, 50%, 75%, and 100% of the quoted spreads in Panel B. The e�ective spread is

twice the di�erence between the trade price and midpoint. An e�ective-to-quoted spread ratio

of 50% is equivalent to paying half of the quoted spread. The column "MidP" corresponds to

zero e�ective spread, i.e., options are traded at midpoints. The column �100%� refers to the case

in which traders buy options at ask and sell options at bid. De Fontnouvelle, Fishe, and Harris

(2003) and Mayhew (2002) show that the typical spread ratio is less than 0.5. This measure

assumes that the fair value equals midpoint and would overstate the true e�ective spread when

fair value is closer to one side of the bid-ask quotes. Muravyev and Pearson (2020) show that

option liquidity takers who time executions pay 20% of this conventional measure.38 Traders

who implement the long-short strategy tend to be liquidity providers, because they sell options

written on �rms with high HHI to hedgers. Thus, the fair value of options being sold tends to be

above the midpoint and traders face low e�ective spreads. In addition to the relative magnitudes

of fair value and midpoint, option traders commonly use limit orders, which are often �lled inside

the quotes set by market makers and could further reduce the e�ective spread.

I manage impacts of transaction costs in two ways. First, I implement strategies based on

extreme deciles rather than quintiles because the higher average returns of decile-based strategies

are more likely to survive transaction costs. Second, I reduce transaction costs by only focusing

on �rms whose percentage option bid-ask spreads are lower than the median of that month.

Panel B in Table 8 presents average monthly returns of long-short strategies under di�erent

spread ratios. I calculate returns in columns under "All" using all �rms at that month. Returns

38This value follows from their �nding that algorithmic traders pay an e�ective half-spread of $0.026 on average
when trading ATM options, while the average quoted half-spread is $0.128.
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in columns under "Low Bid-Ask Spread" are computed using �rms whose option bid-ask spreads

are lower than the median of that month.39

When I include all �rms in the sample, the return using rV IX becomes insigni�cant at the

25% spread ratio. This is not surprising given that VIX portfolio consists of OTM options whose

bid-ask spreads are large. The return using rCall turns negative at the 75% ratio. The strategy

using rPut is the most pro�table: Its pro�t becomes insigni�cant and negative only when the full

bid-ask spread is accounted for.

When I only focus on �rms with lower-than-median bid-ask spreads, the return using rV IX

remains signi�cantly positive at the 25% ratio with a t-statistic of 3.00. Therefore, the strategy

would remain pro�table if one were able to achieve the level of transaction costs that Muravyev

and Pearson document for algorithmic traders. Both the returns using rCall and rPut remain

positive and signi�cant after the full bid-ask spread, especially for rPut.

Overall, the evidence suggests that reducing trading costs is essential to maintain the prof-

itability of option strategies formed by HHI. Trading put options delivers the best chance of

making pro�ts.

5.3 Firm size and share proportion owned by mutual funds

This section investigates whether �rm size and share proportion of the �rm owned by mutual

funds can explain the relation between option returns and HHI. Smaller �rms and �rms with

lower share proportions owned by mutual funds tend to be owned by fewer funds and thus have

higher HHI, because the lower bound of HHI equals the reciprocal of the number of owners. Firm

size (share proportion) and HHI have a negative correlation of −0.24 (−0.29).

39First, I exclude �rms with higher-than-median spreads each month. Then I sort �rms left into deciles by
-HHI.
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To control for the potential nonlinear pricing relations between HHI and the two variables,

I implement a double-sort procedure: First, I sort �rms into quintiles at each month by size or

share proportion. Second, �rms within each size or share proportion quintile are further sorted

into quintiles by −HHI. I equally weight �rms in the 5×5 subgroups. Table 9 presents the average

rV IX for each subgroup. Return spreads sorted by −HHI are highly signi�cant in every size or

share proportion quintile. Their magnitudes are similar to the 6.85% monthly pro�t implemented

on the whole sample in Panel A of Table 8. Therefore, the option return predictability of HHI

cannot be absorbed by size or share proportion.

5.4 Breadth of ownership and short interest

Chen, Hong, and Stein (2002) link the change in the breadth of mutual fund ownership with the

short-sales constraint: When breadth decreases, i.e. fewer mutual funds long the �rm's stock,

short-sales constraint becomes more binding. Thus, a decrease in the breadth should forecast

lower stock returns. It is possible that HHI predicts option returns through its relationship with

the change in the breadth and short interest: When a �rm's breadth decreases, it has higher short

interest and tends to have larger HHI because the lower bound of HHI equals the reciprocal of the

number of owners. Funds may demand more of the �rm's put options to bypass the short-sales

constraint, which pushes up prices of puts and leads to lower subsequent option returns.40

There are two reasons why a �rm can have a higher HHI relative to other �rms: First, its

ownership is more concentrated among a few large stock holders; Second, it is owned by a smaller

number of holders and thus has a larger lower bound for HHI than other �rms. The hedging

channel suggests that the �rst reason drives the option return predictability. To explore the

possibility of the second, I control for the level of the breadth in addition to the change.

40I thank Christopher Jones for raising this point.
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In a cross-sectional regression, I control for the short interest and both the level and change

in the breadth. I construct breadth following Chen, Hong, and Stein (2002) and de�ne it as the

ratio of the number of mutual funds that long the stock to the total number of mutual funds in

that quarter. ∆Breadth is the change in the breadth from the previous quarter. Monthly short

interest data is from Compustat. I scale a �rm's number of stock shares that are held short by

its total shares outstanding from CRSP.

Table 10 presents regression results after controlling for all other option return predictors used

in Column (1) of Table 3. The variable �Breadth�, which is the level of breadth, cannot predict

option returns. This rules out the possibility that the option return predictability of HHI naively

comes from the number of stock holders. ∆Breadth cannot predict rPut and is only marginally

signi�cant in predicting rCall at the 10% level. Short interest negatively predicts rPut with a

t-statistic of −4.59 but not rCall, consistent with its positive correlation with investors' demand

for put options. Even though the t-statistic of HHI decreases after controlling for Breadth,

∆Breadth, and short interest, HHI remains highly signi�cant. This echoes the result in Section

4.1 showing that funds that use naked put strategy to circumvent the short-sales constraint are

not the main driver for the return predictability of HHI.

Overall, there is limited evidence supporting that the option return predictability of HHI

comes from its correlation with the breadth of mutual fund ownership and short interest.

6 Conclusion

This paper documents that HHI constructed from mutual fund stock holdings negatively predicts

cross-sectional equity option returns. The �nding remains robust after controlling for a wide

range of option return predictors and stock characteristics. The predictability is unrelated to

�rm size and share proportion of the �rm owned by mutual funds. It also cannot be explained
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by the breadth of mutual fund ownership, whose change is correlated with short interest and

demand for put options. Inconsistent with an information channel, HHI does not predict returns

and variances of underlying stocks.

To explain the �nding, I propose a hedging and demand pressure channel: HHI predicts

option returns through its positive correlation with stock holders' hedging demand for equity

options. To absorb the order imbalances and compensate for the inventory risk, option dealers

charge higher prices, leading to lower subsequent option returns.

I provide the following evidence consistent with this channel: First, using option positions

of U.S. equity mutual funds, I �nd that the negative option return predictability of HHI mainly

comes from funds that trade equity options for hedging purposes. Second, the predictability

comes entirely from funds that overweight the stock relative to their benchmark indices. Holdings

of funds that underweight the stock cannot predict option returns. Third, HHI becomes a

stronger option return predictor when price impact in option markets gets larger and option

price movement becomes more sensitive to order imbalances.

Option strategies formed from the signal of HHI are pro�table. The pro�ts cannot be ex-

plained by conventional risk factors. Transaction costs like option bid-ask spreads may turn

pro�ts into losses. Therefore, reducing trading costs is essential to maintain the pro�tability of

these strategies. Trading put options, whose prices are the most a�ected by hedging demands,

o�ers the best chance of staying pro�table.

A limitation of HHI as a hedging proxy is that HHI is sensitive to the holdings of large

funds and can be driven into a direction that is unrelated, or even negatively correlated, with

the hedging demand. Truncating mutual funds with extreme sizes in the construction of HHI

can alleviate this problem. Future research may develop a measure accounting for heterogeneous

sizes of stock holders and better re�ecting their hedging demands. Also, it is possible that the
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positive relation between concentrations of marginal investors' positions in the underlying asset

market and their hedging demands for the corresponding derivatives may continue to hold for

other asset classes, such as corporate bonds and credit default swaps.
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Figure 1: Index VIX Return and Variance Swap Return (VSR)

This �gure plots the monthly index VIX return (blue solid line) and variance swap return (red dashed line). The
sample period is from January 1996 to December 2019.
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Figure 2: Option Return Predictability of Lagged HHI

This �gure plots the coe�cient estimates (solid blue line) of and the 95% con�dence intervals (dashed yellow
lines) of the n-month-lagged HHI Protective Put in the monthly Fama-MacBeth regression:

rV IX
i,t = αt,n + γt,nHHI Protective Puti,t−n + θt,nControlsi,t−1 + ϵi,t.

rV IX
i,t is �rm i's equity VIX return in month t. HHI Protective Put is constructed using the stock holdings of
mutual funds that used protective put strategy during the sample period. Control variables include those in
Column (1) of Table 3. The sample period is from January 1996 to September 2015.
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Figure 3: Time Series of Long-Short Strategies Sorted by −HHI

These �gures plot monthly returns (in percentage) of long-short strategies sorted by −HHI as in Panel A of
Table 8. Panels (a), (b), and (c) correspond to the strategy returns of trading rV IX , rPut and rCall, respectively.

(a) VIX Return

(b) Put Return

(c) Call Return
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Table 1: Summary Statistics

This table reports summary statistics for main variables used in this paper. The sample period is from January
1996 to December 2019. Returns are reported on a monthly basis. (%) after a variable means that its statistics
are reported in percent. Index (Equity) rV IX is the return of index (equity) VIX portfolio. Index (Equity) rV SR

is de�ned as the realized variance of index (equity) return divided by the price of index (equity) VIX portfolio
minus 1. Number of Strikes is the number of option contracts in an equity VIX portfolio. Correlation(rV IX ,
rV SR) is the �rm-level time-series correlation between equity VIX returns and equity variance swap returns. To
calculate the correlation, I require a �rm to have at least 30 observations. rCall is the delta-hedged gain of an
ATM call until option maturity scaled by (∆S−C), where ∆ is the Black-Scholes option delta, S is the underlying
stock price, and C is the price of call. rPut is the delta-hedged gain of an ATM put until option maturity scaled
by (P −∆S), where P is the price of put. HHI Mutual Fund (Institution) is the Her�ndahl-Hirschman Index of
mutual fund (13f institution) ownership of the stock.

Observation Mean Std P10 Median P90

Panel A: Option returns.

Index rV IX(%) 288 -24.26 68.34 -69.85 -43.48 28.90
Index rV SR(%) 288 -24.73 67.40 -69.68 -43.98 28.16
Number of Firms Per Month 288 693 277 340 704 1057
Number of Strikes 199,648 7.97 6.30 4 6 13
Equity rV IX(%) 199,648 -8.24 83.07 -62.60 -24.45 59.98
Equity rV SR(%) 199,648 -8.80 100.55 -68.04 -30.57 61.58
Correlation(rV IX , rV SR) 1,976 0.83 0.26 0.56 0.93 0.99

rCall(%) 199,648 -0.44 5.18 -4.76 -0.64 3.62
rPut(%) 199,648 -0.70 4.79 -5.01 -0.86 3.30

Panel B: HHI.

HHI Mutual Fund 170,832 0.154 0.220 0.024 0.065 0.407
HHI Institution 177,831 0.067 0.081 0.027 0.045 0.113
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Table 2: HHI and Cross-Sectional Option Returns

This table reports the results of monthly Fama-MacBeth regressions in which one-month-ahead option returns,
including equity VIX returns and returns of delta-hedged put and call, are the dependent variables, respectively.
T -statistics, in parentheses, are computed using Newey-West standard errors with three lags. Average CS R2 is the
average adjusted R-squares in cross-sectional regressions. The sample period is from January 1996 to December
2019.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

HHI Mutual Fund -0.156 -0.145 -0.020 -0.016 -0.016 -0.013
(-5.57) (-4.60) (-8.26) (-6.51) (-6.03) (-4.87)

HHI Institution -0.249 -0.125 -0.041 -0.028 -0.031 -0.019
(-5.49) (-2.72) (-8.79) (-7.55) (-6.31) (-4.62)

Intercept -0.067 -0.071 -0.061 -0.005 -0.005 -0.004 -0.003 -0.003 -0.002
(-3.62) (-3.89) (-3.26) (-5.90) (-6.31) (-4.51) (-3.09) (-3.48) (-2.18)

Observations 170,832 177,831 170,747 170,832 177,831 170,747 170,832 177,831 170,747
Average CS R2 0.005 0.003 0.006 0.007 0.007 0.009 0.006 0.005 0.008
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Table 3: Robustness Checks: Control for Option Return Predictors

This table reports the results of Fama-MacBeth regressions including controls. Holdings of Mutual Fund (Insti-
tution) is the share proportion of a �rm owned by mutual funds (13f institutions). IVOL is the idiosyncratic
volatility of stock return. HV-VIX is the di�erence between historical volatility and equity VIX. IV Term Spread
is the di�erence between long- and short-term implied volatilities. RN Skew is the risk-neutral skewness of stock
return, estimated from a portfolio of OTM options. Beta is the coe�cient of regressing past year daily excess
stock returns on excess market returns. Ln(ME) is the natural logarithm of the market equity of a �rm. Ln(BM)
is the natural logarithm of book-to-market ratio. RETt−1,t is the past-month return of the underlying stock.
RETt−12,t−1 is the return of the underlying stock during past 11 months ending at the previous month. Amihud
is the Amihud illiquidity measure. Option Bid-Ask Spread is the percentage bid-ask spread of the option port-
folio. To test the information channel, I use two additional dependent variables: rStock

i,t+1 is the one-month-ahead
return of the underlying stock; RV Stock

i,t+1 is the one-month-ahead realized variance of the underlying stock return.
T -statistics, in parentheses, are computed using Newey-West standard errors with three lags. The sample period
is from January 1996 to December 2019.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1 rStock

i,t+1 RV Stock
i,t+1

(1) (2) (3) (4) (5) (6) (7)

HHI Mutual Fund -0.157 -0.154 -0.015 -0.014 -0.004 0.000
(-5.61) (-4.46) (-6.15) (-5.59) (-0.68) (0.24)

HHI Institution -0.138 -0.050 -0.013 -0.006 -0.019 -0.002
(-2.89) (-0.86) (-3.30) (-1.28) (-1.73) (-0.73)

Holdings of Mutual Fund 0.159 0.151 0.015 0.015 0.011 -0.004
(2.40) (1.97) (3.25) (3.24) (0.97) (-1.01)

Holdings of Institution 0.032 0.008 0.002 0.000 -0.002 -0.004
(2.07) (0.38) (1.82) (0.27) (-0.41) (-3.94)

IVOL -1.929 -1.929 -1.961 -0.202 -0.179 -0.145 0.337
(-5.53) (-5.50) (-5.52) (-7.36) (-6.42) (-2.60) (10.36)

HV-VIX 0.215 0.214 0.217 0.015 0.015 -0.005 -0.002
(8.47) (8.38) (8.53) (8.63) (8.74) (-1.36) (-2.09)

IV Term Spread 0.231 0.239 0.226 0.053 0.060 0.007 -0.094
(3.68) (3.84) (3.58) (10.29) (9.03) (0.62) (-9.96)

RN Skew 0.039 0.038 0.039 0.002 -0.002 0.005 0.001
(4.07) (3.93) (4.03) (3.49) (-3.29) (3.94) (3.05)

Beta 0.028 0.031 0.029 0.001 0.001 -0.001 0.010
(2.94) (3.33) (3.04) (1.47) (1.18) (-0.39) (9.79)

Ln(ME) -0.004 -0.002 -0.005 0.001 0.000 -0.000 -0.003
(-0.87) (-0.50) (-1.05) (2.30) (0.74) (-0.59) (-11.35)

Ln(BM) 0.004 0.003 0.003 0.001 0.001 0.000 -0.002
(1.37) (0.83) (1.00) (3.69) (3.50) (0.08) (-9.44)

RETt−1,t -0.085 -0.086 -0.086 -0.008 -0.004 -0.004 -0.013
(-2.49) (-2.46) (-2.47) (-2.76) (-1.28) (-0.51) (-4.39)

RETt−12,t−1 0.021 0.021 0.019 0.001 0.000 0.007 -0.000
(1.77) (1.81) (1.65) (1.55) (0.47) (2.35) (-0.27)

Amihud -1.809 -2.589 -1.885 -0.487 -0.361 -0.610 0.553
(-1.20) (-1.87) (-1.28) (-3.58) (-2.69) (-2.31) (4.53)

Option Bid-Ask Spread -0.021 -0.023 -0.027 -0.001 0.000 0.005 -0.006
(-0.62) (-0.71) (-0.81) (-0.33) (0.16) (0.95) (-5.63)

Intercept -0.000 -0.049 0.014 -0.011 -0.005 0.020 0.040
(-0.00) (-0.64) (0.18) (-2.59) (-1.01) (1.66) (9.33)

Observations 150,062 151,853 150,013 150,013 150,013 150,013 150,013
Average CS R2 0.046 0.046 0.046 0.086 0.090 0.109 0.305
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Table 4: HHI: Funds with Di�erent Option Positions

This table reports the results of Fama-MacBeth regressions in which I use HHI to predict one-month-ahead rV IX .
I construct HHI using stock holdings of funds under di�erent categories, classi�ed by their option holdings, in
the Morningstar dataset. HHI MStar is constructed using all U.S. equity funds in the Morningstar dataset. HHI
Option Fund is constructed using only funds that used equity options during the sample period. HHI Put Fund
is constructed using funds that used puts. HHI Call Fund is constructed using funds that only used calls and
never used puts. HHI Put Short is constructed using put funds that only short puts but never long puts. HHI
Put Long is constructed using put funds that long puts. HHI Call Short is constructed using call funds that only
short calls but never long calls. HHI Call Long is constructed using call funds that long calls. HHI Protective
Put is constructed using funds that used protective put strategy during the sample period. HHI Naked Put is
constructed using funds that used naked put strategy during the sample period. T -statistics, in parentheses,
are computed using Newey-West standard errors with three lags. The sample period is from January 1996 to
September 2015.

(1) (2) (3) (4) (5) (6)

HHI MStar -0.055
(-2.02)

HHI Option Fund -0.069 -0.052 0.019 -0.099
(-3.54) (-3.10) (0.87) (-5.78)

HHI Put Fund -0.098
(-5.25)

HHI Call Fund 0.027
(1.79)

HHI Put Long -0.082
(-5.42)

HHI Put Short -0.014
(-0.89)

HHI Call Long -0.003
(-0.28)

HHI Call Short 0.014
(1.04)

HHI Protective Put -0.066
(-4.59)

HHI Naked Put -0.018
(-1.39)

Intercept -0.060 -0.058 -0.044 -0.060 -0.029 -0.028
(-2.74) (-2.63) (-1.83) (-2.66) (-0.91) (-0.92)

Observations 123,258 123,017 121,540 119,397 97,410 107,546
Average CS R2 0.005 0.006 0.006 0.005 0.008 0.006
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Table 5: Over- v.s. Under-weighted HHI

This table reports the results of Fama-MacBeth regressions in which I use HHI, constructed using stock holdings
of funds in the Morningstar dataset, to predict one-month-ahead option returns. HHI Overweight (Underweight)
is constructed using the holdings of funds that overweight (underweight) the �rm relative to their self-declared
benchmarks. T -statistics, in parentheses, are computed using Newey-West standard errors with three lags. The
sample period is from January 1996 to September 2015.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6)

HHI MStar -0.099 -0.013 -0.010
(-3.59) (-6.10) (-4.60)

HHI Overweight -0.268 -0.036 -0.027
(-4.73) (-9.69) (-5.80)

HHI Underweight 0.002 -0.003 -0.002
(0.07) (-2.01) (-1.06)

Intercept -0.068 -0.087 -0.007 -0.004 -0.004 -0.003
(-3.28) (-3.36) (-6.90) (-3.54) (-3.93) (-2.63)

Observations 126,558 75,803 126,558 75,803 126,558 75,803
Average CS R2 0.006 0.006 0.007 0.013 0.006 0.012
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Table 6: Option Price Impact

This table reports the coe�cients of HHI in the monthly Fama-MacBeth regression:

ri,t+1 = αt + γtHHIi,t + θtControlsi,t + ϵi,t+1.

ri,t+1 is �rm i's one-month-ahead option return. I use S12 database to construct HHI. Control variables include
those in Column (1) of Table 3. The �rst row reports the coe�cients of HHI among three sub-periods ranked by
TED spread. In the next three rows, I sort �rms by three stock characteristics associated with option unhedgeable
risks: To proxy for stochastic volatility, I estimate the EGARCH(1,1) model for stock return and calculate the
volatility of �tted volatilities; I use the kurtosis of underlying stock returns to proxy for jump risk; to measure
delta hedging cost, I use the ratio of the stock return variance uncorrelated with the market to the average dollar
trading volume. All three variables are estimated using past-one-year daily stock returns on the third Friday of
each month. T -statistics, in parentheses, are computed using Newey-West standard errors with three lags. The
sample period is from January 1996 to December 2019.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

Low Medium High Low Medium High Low Medium High

TED spread -0.080 -0.167 -0.222 -0.010 -0.019 -0.026 -0.007 -0.015 -0.018
(-2.16) (-3.01) (-4.62) (-4.04) (-5.17) (-6.18) (-2.66) (-4.44) (-4.24)

Stochastic Volatility -0.132 -0.211 -0.134 -0.006 -0.016 -0.020 -0.002 -0.015 -0.014
(-1.84) (-3.03) (-3.16) (-1.80) (-4.21) (-6.09) (-0.57) (-3.91) (-3.94)

Jump Risk -0.063 -0.170 -0.246 -0.008 -0.019 -0.027 -0.006 -0.010 -0.023
(-1.19) (-2.57) (-4.72) (-1.95) (-4.87) (-6.04) (-1.53) (-2.23) (-5.27)

Delta Hedging Cost -0.100 -0.165 -0.133 -0.003 -0.011 -0.020 -0.001 -0.007 -0.015
(-0.88) (-2.75) (-3.46) (-0.65) (-3.27) (-6.26) (-0.10) (-2.16) (-4.74)
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Table 7: Dispersion of Fund Sizes

This table examines how the dispersion of sizes among mutual funds that hold the �rm could a�ect the option
return predictability of HHI. I restrict the sample to �rms held by at least �ve mutual funds in a quarter and use S12
to construct HHI. In Panel A, I �rst sort �rms into three subgroups each month by the kurtosis of their fund holders'
total net assets. Then I run the Fama-MacBeth regression, ri,t+1 = αt + γtHHIi,t + θtControlsi,t + ϵi,t+1, among
each subgroup and report the coe�cient of HHI. In Panel B, I run the same Fama-MacBeth regression using
the whole sample of �rms, controlling for option return predictors in Column (1) of Table 3. To construct
HHI Truncated for a �rm, I delete the highest quintile of its fund holders ranked by their asset sizes. T -
statistics, in parentheses, are computed using Newey-West standard errors with three lags. The sample period is
from January 1996 to December 2019.

Panel A: Sort by kurtosis of fund sizes.

Low Medium High

rV IX
i,t+1 -0.107 -0.303 -0.384

(-2.41) (-2.61) (-2.34)

rPut
i,t+1 -0.016 -0.020 -0.009

(-4.98) (-2.53) (-1.12)

rCall
i,t+1 -0.010 -0.016 -0.005

(-3.37) (-2.15) (-0.58)

Panel B: Truncated HHI.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

HHI Non-Truncated -0.144 -0.044 -0.018 -0.007 -0.012 -0.008
(-4.17) (-1.09) (-7.79) (-2.42) (-5.43) (-2.55)

HHI Truncated -0.144 -0.134 -0.020 -0.016 -0.011 -0.006
(-3.08) (-2.62) (-6.93) (-4.73) (-4.26) (-1.65)

Intercept -0.002 -0.062 -0.049 -0.012 -0.015 -0.013 -0.006 -0.010 -0.008
(-0.03) (-0.73) (-0.56) (-2.67) (-3.07) (-2.59) (-1.40) (-2.02) (-1.49)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 149,663 149,663 149,663 149,663 149,663 149,663 149,663 149,663 149,663
Average CS R2 0.046 0.047 0.047 0.085 0.086 0.087 0.088 0.089 0.090
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Table 8: Strategy Performance

This table reports monthly average returns (in percentage) of long-short strategies sorted by −HHI and also
examines the impact of option bid-ask spreads. In Panel A, I sort �rms into quintiles based on −HHI Mutual
Fund on every third Friday and equally weight �rms within each quintile. Alpha is the risk-adjusted return of the
long-short strategy. It is adjusted for Fama and French �ve factors, stock momentum, and the S&P 500 Index
VIX return in excess of risk-free rate. Monthly Sharpe Ratio is also reported. In Panel B, I examine the impact
of option bid-ask spreads by comparing the long-short strategy returns computed from the midpoint price (MidP)
with those computed from the e�ective bid-ask spread (ESPR), estimated to be 25%, 50%, 75%, and 100% of the
quoted spread (QSPR). I use more extreme deciles rather than quintiles sort in this panel. I calculate returns in
�Low Bid-Ask Spread� columns using �rms with percentage bid-ask spreads lower than the median of that month.
I calculate returns in �All� columns using all �rms in that month. T -statistics are in parentheses. The sample
period is from January 1996 to December 2019.

Panel A: Quintile sort by −HHI.

1 2 3 4 5 5-1 Alpha Sharpe Ratio

rV IX -12.60 -9.78 -8.04 -7.34 -5.74 6.85 6.87 0.40
(6.83) (6.40)

rPut -1.36 -0.94 -0.69 -0.55 -0.39 0.97 0.92 1.00
(16.93) (14.79)

rCall -0.92 -0.65 -0.43 -0.33 -0.19 0.73 0.69 0.67
(11.38) (9.82)

Panel B: Decile sort after bid-ask spreads

All Low Bid-Ask Spread

ESPR/QSPR ESPR/QSPR

MidP 25% 50% 75% 100% MidP 25% 50% 75% 100%

rV IX 7.67 2.12 -3.83 -10.43 -18.52 7.23 4.14 1.04 -2.10 -5.27
(5.35) (1.44) (-2.49) (-6.29) (-9.86) (5.17) (3.00) (0.76) (-1.54) (-3.87)

rPut 1.11 0.82 0.52 0.23 -0.07 1.11 0.96 0.81 0.66 0.52
(14.48) (10.88) (7.06) (3.07) (-1.02) (11.81) (10.38) (8.90) (7.37) (5.79)

rCall 0.82 0.51 0.20 -0.11 -0.41 0.85 0.68 0.52 0.36 0.19
(9.87) (6.28) (2.53) (-1.34) (-5.25) (8.36) (6.84) (5.28) (3.66) (2.01)
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Table 9: Double Sort: Firm Size and Share Proportion

This table reports monthly return means (in percentage) and t-statistics from sequential double sorts on rV IX . In
Panel A (B), I �rst sort �rms into quintiles based on �rm size (share proportion of the �rm held by mutual funds),
and then further sort each quintile by −HHI Mutual Fund. Firms are equally weighted. The sample period is
from January 1996 to December 2019.

Panel A: Control for �rm size.

−HHI

Size 1(Low) 2 3 4 5(High) 5-1 t-statistics

Low -14.98 -14.37 -10.97 -8.51 -5.92 9.06 (4.85)
2 -12.10 -9.72 -8.02 -7.18 -5.27 6.83 (3.99)
3 -12.14 -10.47 -8.43 -7.80 -6.60 5.54 (3.33)
4 -9.74 -9.62 -8.92 -7.90 -5.28 4.46 (3.29)
High -9.63 -6.91 -5.38 -7.78 -3.96 5.67 (3.61)

Panel B: Control for share proportion.

−HHI

Holdings of Mutual Fund 1(Low) 2 3 4 5(High) 5-1 t-statistics

Low -14.77 -12.46 -10.53 -8.84 -8.63 6.14 (3.67)
2 -11.96 -9.46 -8.64 -10.66 -5.81 6.15 (3.74)
3 -12.51 -10.46 -9.12 -7.10 -6.43 6.08 (3.53)
4 -10.35 -9.11 -6.92 -5.35 -3.06 7.29 (4.34)
High -11.18 -6.79 -7.65 -4.03 -6.72 4.46 (3.45)
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Table 10: Breadth of Ownership and Short Interest

This table reports the results from monthly Fama-MacBeth regressions in which I control for short interest and
the level and change of breadth of mutual fund ownership, together with other controls. Breadth is the breadth of
mutual fund ownership as in Chen, Hong, and Stein (2002). ∆Breadth is the change in breadth. Short Interest
is a �rm's number of stock shares that are held short, normalized by its total shares outstanding. T -statistics, in
parentheses, are computed using Newey-West standard errors with three lags. The sample period is from January
1996 to December 2019.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6)

HHI Mutual Fund -0.157 -0.155 -0.018 -0.017 -0.013 -0.012
(-5.61) (-3.60) (-8.45) (-7.27) (-6.49) (-5.41)

Breadth 0.162 -0.006 -0.015
(0.90) (-0.63) (-1.53)

∆Breadth 3.134 0.101 0.120
(2.40) (1.55) (1.83)

Short Interest -0.060 -0.021 0.000
(-0.87) (-4.59) (0.07)

Holdings of Mutual Fund 0.159 0.188 0.019 0.019 0.014 0.013
(2.40) (2.02) (4.93) (4.08) (3.83) (2.56)

IVOL -1.929 -1.482 -0.206 -0.184 -0.180 -0.183
(-5.53) (-3.12) (-7.59) (-5.88) (-6.53) (-6.21)

HV-VIX 0.215 0.223 0.015 0.014 0.015 0.014
(8.47) (8.67) (8.69) (8.47) (8.89) (8.37)

IV Term Spread 0.231 0.264 0.052 0.050 0.059 0.059
(3.68) (3.72) (10.23) (9.02) (9.02) (8.52)

RN Skew 0.039 0.035 0.002 0.002 -0.002 -0.001
(4.07) (3.07) (3.53) (3.36) (-3.32) (-2.07)

Beta 0.028 0.027 0.001 0.001 0.001 0.001
(2.94) (2.34) (1.36) (0.77) (1.09) (0.80)

Ln(ME) -0.004 -0.008 0.001 0.000 0.000 0.001
(-0.87) (-0.94) (2.29) (0.59) (0.97) (1.52)

Ln(BM) 0.004 0.002 0.001 0.001 0.001 0.001
(1.37) (0.41) (3.40) (3.72) (3.66) (3.17)

RETt−1,t -0.085 -0.089 -0.008 -0.009 -0.004 -0.005
(-2.49) (-2.36) (-2.78) (-3.19) (-1.29) (-1.78)

RETt−1,t 0.021 0.006 0.001 -0.000 0.000 -0.000
(1.77) (0.46) (1.58) (-0.03) (0.48) (-0.30)

Amihud -1.809 -1.627 -0.516 -0.679 -0.356 -0.328
(-1.20) (-0.96) (-3.79) (-4.76) (-2.65) (-2.18)

Option Bid-Ask Spread -0.021 -0.041 -0.000 -0.004 0.001 -0.001
(-0.62) (-0.97) (-0.16) (-1.62) (0.29) (-0.29)

Intercept -0.000 0.034 -0.011 -0.004 -0.006 -0.010
(-0.00) (0.28) (-2.51) (-0.78) (-1.27) (-1.75)

Observations 150,062 132,008 150,062 132,008 150,062 132,008
Average CS R2 0.046 0.057 0.085 0.103 0.089 0.111
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Appendices

A VIX Portfolio

This section follows Heston and Li (2020) and proves that the payo� of VIX portfolio approxi-

mates the realized variance of the underlying stock return.

Equation (1) is a discrete version of the continuous integral in Carr and Madan (1998), who

show that the price of a portfolio whose payo� equals the realized variance is

V̂ (t, T ) = 2

∫ ∞

0

O(K, t, T )

K2
dK. (A1)

Given stock price S(T ) at expiration, the option payo� O(K,T, T ) equals Max(S(T )−K, 0) for

a call option and Max(K − S(T ), 0) for a put option. In the absence of intermediate dividends,

the terminal payo� of this idealized portfolio with continuous strikes equals

V̂ (T, T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

(
S(T )

S(t)(1 + rf )T−t
− 1

)
, (A2)

where rf is the daily risk-free rate assumed to be constant over the life of the option. The

�rst term in the payo� (A2) represents selling two units of the �log-portfolio�. The second term

represents a costless static hedge that leverages (the present value of) two dollars of the stock at

time t and holds this hedge position constant until expiration at time T . The combined payo� is

a U-shaped function of the stock price, resembling a squared stock return. Therefore, the price

of this portfolio represents the risk-neutral variance of the stock return.

We can further reduce risk of the idealized VIX portfolio by using a daily hedge instead of

the static hedge just at time t. We replace the second term of (A2) with a daily delta hedge of

the log-portfolio. Due to the special case of log-payo�, its delta is model-free and equals 1
S(t) .
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Thus, to delta hedge the log-portfolio at daily frequency, investors only need to buy 1
S(t) shares

of the stock, i.e. invest $1 in the stock, and rebalance the hedging position each day. The payo�

of this daily-hedged idealized VIX portfolio equals

V̂hedged(T, T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

T∑
u=t+1

(r(u)− rf ). (A3)

We can further rewrite (A3) to express the log-payo� in terms of a telescoping series of daily

stock returns as follows:

V̂hedged(T, T ) = −2

T∑
u=t+1

log(
1 + r(u)

1 + rf
) + 2

T∑
u=t+1

(r(u)− rf ). (A4)

When daily stock return and risk-free rate are small, a second-order Taylor series expansion

shows that the payo� of this daily-hedged option portfolio (A4) closely approximates the realized

variance of the stock return over time t to T de�ned as the sum of squared daily returns:

V̂hedged(T, T ) = 2
T∑

u=t+1

[r(u)− rf − log(
1 + r(u)

1 + rf
)] ≈

T∑
u=t+1

(r(u)− rf )
2 ≈

T∑
u=t+1

r(u)2. (A5)

Since rf is very small, the last approximation holds tightly. Combine Equation (A2) and (A5),

it is obvious that the numerator in Equation (2) approximates the realized variance.

B Variable Construction

This section discusses the construction of control variables used in the paper.

� Holdings of Mutual Fund: The share proportion of a �rm owned by mutual funds, calculated

using the S12 database.
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� Holdings of Institution: The share proportion of a �rm owned by 13f institutions, calculated

using the S34 database.

� IVOL: Idiosyncratic volatility of the stock return, estimated from Fama-French 3 factors

using rolling one-month daily returns, following Ang, Hodrick, Xing, and Zhang (2006).

� HV-VIX: The di�erence between historical volatility, estimated using rolling one-year daily

stock returns, and equity VIX. It is similar to the volatility deviation measure in Goyal

and Saretto (2009).

� IV Term Spread: The di�erence between long- and short-term implied volatilities. Fol-

lowing Vasquez (2017), I use the average of ATM put- and call-implied volatilities. I use

the options with the maturity closest to 30 days for short-term and those with the longest

maturity and the same strike for long-term.

� RN Skew: Risk-neutral skewness of the stock return, estimated from a portfolio of OTM

options following Bakshi, Kapadia, and Madan (2003).

� Beta: The coe�cient of regressing past year daily excess stock returns on excess market

returns.

� Ln(ME): Firm size, measured as the natural logarithm of the market equity for June of

year t following Fama and French (1992).

� Ln(BM): Value, measured as the natural logarithm of book equity for the �scal year-end of

a calendar year divided by market equity at the end of December of that year, as in Fama

and French (1992).

� RETt−1,t: Short-term stock return reversal, calculated as the cumulative stock return from

the start of a month to the third Friday of the same month.
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� RETt−12,t−1: Stock return momentum, calculated as the cumulative stock return over the

past 11 months ending at the end of the previous month (Jegadeesh and Titman (1993)).

� Amihud: Amihud illiquidity measure (Amihud (2002)), calculated using the past 30-days

daily data and multiplied by 106 to adjust the scale.

� Option Bid-Ask Spread: For the equity VIX portfolio, it is the percentage bid-ask spread

calculated as the absolute bid-ask spread divided by the midpoint price of VIX portfolio;

for the delta-hedged call (put), it is the percentage bid-ask spread of the call (put) option.

� Breadth: The breadth of mutual fund ownership in Chen, Hong, and Stein (2002). It is

the ratio of the number of mutual funds that long the stock to the total number of mutual

funds in that quarter.

� ∆Breadth: Change in the breadth of mutual fund ownership from the previous quarter.

� Short Interest: The �rm's number of stock shares that are held short, normalized by its

shares outstanding.
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Table A1: Complementary Summary Statistics

This table presents complementary summary statistics for variables used in this paper. Panel A reports the
statistics for all control variables. Panel B presents the statistics for HHI constructed using di�erent subsets of
mutual funds.

Observation Mean Std. P10 Median P90

Panel A: Control Variables.

Holdings of Mutual Fund 170,728 0.088 0.098 0.001 0.042 0.237
Holdings of Institution 177,726 0.691 0.271 0.242 0.766 0.995
IVOL 199,648 0.021 0.017 0.007 0.016 0.039
HV-VIX 199,648 0.125 0.272 -0.199 0.130 0.442
IV Term Spread 199,648 -0.025 0.093 -0.122 -0.008 0.056
RN Skew 196,849 -0.522 0.329 -0.937 -0.504 -0.130
Beta 199,648 1.218 0.655 0.622 1.158 1.946
Ln(ME) 196,631 15.065 1.631 13.061 15.019 17.193
Ln(BM) 174,028 -1.160 1.150 -2.459 -1.135 0.013
RETt−1,t 199,648 0.014 0.114 -0.104 0.015 0.130
RETt−12,t−1 199,393 0.127 0.474 -0.405 0.128 0.642
Amihud 199,648 0.002 0.014 0.000 0.000 0.004
Option Bid-Ask Spread 199,648 0.270 0.194 0.085 0.226 0.497
Call Bid-Ask Spread 199,648 0.131 0.126 0.033 0.100 0.250
Put Bid-Ask Spread 199,648 0.151 0.154 0.035 0.111 0.295
Breadth 169,566 0.027 0.030 0.004 0.016 0.060
∆Breadth 169,566 0.001 0.004 -0.002 0.000 0.003
Short Interest 174,561 0.075 0.097 0.010 0.043 0.173

Panel B: HHI Di�erent Versions.

HHI MStar 126,558 0.144 0.208 0.030 0.066 0.343
HHI Overweight 101,427 0.162 0.214 0.037 0.083 0.381
HHI Underweight 75,822 0.195 0.122 0.102 0.172 0.285
HHI Option Fund 123,258 0.297 0.253 0.084 0.201 0.699
HHI Put Fund 121,860 0.428 0.284 0.131 0.339 0.986
HHI Call Fund 119,910 0.400 0.281 0.122 0.303 0.957
HHI Put Long 121,131 0.462 0.291 0.145 0.376 1.000
HHI Put Short 102,394 0.778 0.256 0.383 0.921 1.000
HHI Call Long 116,754 0.593 0.265 0.266 0.538 1.000
HHI Call Short 116,481 0.460 0.310 0.138 0.355 1.000
HHI Protective Put 115,767 0.566 0.313 0.187 0.502 1.000
HHI Naked Put 111,644 0.771 0.257 0.381 0.900 1.000
HHI Non-Truncated 168,459 0.121 0.144 0.024 0.064 0.301
HHI Truncated 168,459 0.108 0.152 0.013 0.049 0.284
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Table A2: HHI of Di�erent Fund Categories with Controls

This table provides robustness checks for the results in Table 4 by including a list of controls.

(1) (2) (3) (4) (5) (6)

HHI MStar -0.021
(-0.72)

HHI Option Fund -0.059 -0.059 -0.003 -0.083
(-3.60) (-3.36) (-0.17) (-4.28)

HHI Put Fund -0.069
(-4.03)

HHI Call Fund 0.017
(1.14)

HHI Put Long -0.069
(-4.71)

HHI Put Short -0.042
(-3.00)

HHI Call Long -0.021
(-1.43)

HHI Call Short 0.011
(0.91)

HHI Protective Put -0.054
(-3.94)

HHI Naked Put 0.002
(0.16)

Holdings of Mutual Fund 0.130 0.133 0.119 0.126 0.080 0.120
(1.89) (1.97) (1.74) (1.82) (1.11) (1.84)

IVOL -1.691 -1.638 -1.657 -1.729 -1.624 -1.841
(-4.34) (-4.23) (-4.14) (-4.40) (-3.62) (-4.54)

HV-VIX 0.230 0.231 0.232 0.226 0.258 0.232
(7.60) (7.64) (7.54) (7.31) (7.23) (7.68)

IV Term Spread 0.291 0.296 0.293 0.325 0.347 0.290
(4.06) (4.14) (4.04) (4.60) (3.83) (3.70)

RN Skew 0.039 0.040 0.038 0.038 0.045 0.037
(3.51) (3.55) (3.35) (3.35) (3.95) (3.26)

Beta 0.034 0.035 0.034 0.036 0.034 0.036
(3.20) (3.24) (3.15) (3.32) (2.68) (3.12)

Ln(ME) -0.001 -0.002 -0.003 -0.003 -0.012 -0.004
(-0.20) (-0.26) (-0.56) (-0.54) (-1.78) (-0.54)

Ln(BM) 0.005 0.005 0.006 0.003 0.001 0.004
(1.30) (1.38) (1.69) (0.70) (0.27) (1.12)

RETt−1,t -0.082 -0.086 -0.085 -0.096 -0.085 -0.074
(-2.14) (-2.20) (-2.15) (-2.45) (-1.90) (-1.89)

RETt−12,t−1 0.040 0.040 0.039 0.041 0.043 0.043
(3.47) (3.47) (3.44) (3.48) (3.16) (3.33)

Amihud -2.581 -2.481 -1.601 -2.127 -0.114 -2.222
(-1.40) (-1.31) (-0.85) (-1.20) (-0.05) (-1.15)

Option Bid-Ask Spread 0.033 0.031 0.034 0.029 0.035 0.023
(0.88) (0.83) (0.88) (0.76) (0.76) (0.60)

Intercept -0.074 -0.065 -0.027 -0.045 0.151 -0.023
(-0.80) (-0.70) (-0.28) (-0.48) (1.31) (-0.22)

Observations 107,643 107,607 106,889 106,138 89,681 97,107
Average CS R2 0.050 0.050 0.050 0.051 0.058 0.052
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Table A3: Over- v.s. Under-weighted HHI with Controls

This table provides robustness checks for the results in Table 5 by including a list of controls.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6)

HHI MStar -0.074 -0.010 -0.008
(-2.91) (-5.91) (-4.37)

HHI Overweight -0.202 -0.018 -0.013
(-3.22) (-4.32) (-2.87)

HHI Underweight -0.012 0.000 0.001
(-0.38) (0.02) (0.55)

Holdings of Mutual Fund 0.157 -0.345 0.016 -0.019 0.013 0.014
(2.33) (-0.58) (4.12) (-0.49) (3.09) (0.59)

IVOL -1.629 -2.068 -0.184 -0.201 -0.157 -0.185
(-4.20) (-4.09) (-5.85) (-6.53) (-4.91) (-5.29)

HV-VIX 0.229 0.117 0.017 0.010 0.017 0.010
(7.59) (4.47) (8.50) (4.97) (8.33) (4.85)

IV Term Spread 0.300 0.319 0.056 0.048 0.063 0.052
(4.21) (3.15) (9.86) (6.72) (9.20) (5.72)

RN Skew 0.039 0.039 0.002 0.001 -0.002 -0.001
(3.46) (3.11) (2.94) (1.13) (-2.72) (-1.56)

Beta 0.036 0.046 0.001 0.001 0.001 0.001
(3.36) (3.72) (1.75) (1.66) (1.37) (1.29)

Ln(ME) 0.001 -0.004 0.001 0.000 0.001 0.000
(0.17) (-0.49) (3.37) (1.37) (2.15) (0.64)

Ln(BM) 0.006 0.001 0.001 0.001 0.001 0.001
(1.62) (0.27) (3.54) (1.55) (3.78) (1.53)

RETt−1,t -0.081 -0.085 -0.008 -0.008 -0.003 -0.006
(-2.10) (-1.63) (-2.32) (-2.31) (-0.93) (-1.40)

RETt−12,t−1 0.041 0.031 0.002 0.002 0.001 0.001
(3.53) (2.17) (2.40) (1.81) (1.41) (0.53)

Amihud -2.718 2.990 -0.525 -0.222 -0.382 -0.073
(-1.52) (0.93) (-3.34) (-0.88) (-2.51) (-0.29)

Option Bid-Ask Spread 0.032 -0.009 0.002 -0.002 0.004 -0.002
(0.86) (-0.20) (0.66) (-0.69) (1.27) (-0.51)

Intercept -0.117 -0.039 -0.020 -0.011 -0.014 -0.007
(-1.29) (-0.31) (-3.83) (-1.69) (-2.57) (-1.05)

Observations 108,181 71,645 108,181 71,645 108,181 71,645
Average CS R2 0.051 0.048 0.089 0.089 0.091 0.096
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Table A4: Share Proportion Overweighted by Mutual Funds

This table checks the option return predictability for the share proportion of a �rm overweighted by its mutual
fund holders relative to their benchmarks. I calculate the variable �Proportion Overweight� as follows: For a given
stock, I calculate the dollar amount each fund holder invests in the stock in excess of its own benchmark. Then I
sum across funds and scale the summation by the market cap of the stock.

rV IX
i,t+1 rPut

i,t+1 rCall
i,t+1

(1) (2) (3) (4) (5) (6)

Proportion Overweight 0.068 0.082 0.011 0.004 0.007 0.006
(0.82) (1.02) (3.90) (0.80) (2.63) (1.21)

HHI Overweight -0.200 -0.019 -0.015
(-3.23) (-4.43) (-3.38)

HHI Underweight -0.026 -0.001 0.000
(-0.71) (-0.37) (0.11)

Holdings of Mutual Fund -0.163 -0.020 0.013
(-0.43) (-0.64) (0.58)

IVOL -1.745 -0.190 -0.166
(-3.12) (-5.95) (-4.56)

HV-VIX 0.135 0.010 0.010
(5.24) (4.91) (4.66)

IV Term Spread 0.298 0.046 0.051
(2.81) (5.93) (5.42)

RN Skew 0.041 0.001 -0.001
(3.05) (0.94) (-1.55)

Beta 0.040 0.001 0.001
(3.22) (1.31) (0.99)

Ln(ME) -0.001 0.001 0.000
(-0.10) (1.75) (1.06)

Ln(BM) 0.000 0.000 0.000
(0.05) (1.37) (1.16)

RETt−1,t -0.109 -0.009 -0.007
(-2.00) (-2.43) (-1.60)

RETt−12,t−1 0.031 0.002 0.000
(2.02) (1.69) (0.36)

Amihud 4.409 -0.234 -0.062
(1.43) (-0.92) (-0.23)

Option Bid-Ask Spread -0.019 -0.002 -0.003
(-0.44) (-0.43 (-0.81)

Intercept -0.114 -0.088 -0.010 -0.014 -0.007 -0.009
(-3.50) (-0.74) (-8.48) (-1.99) (-6.01) (-1.38)

Observations 90,556 63,339 90,556 63,339 90,556 63,339
Average CS R2 0.007 0.054 0.004 0.098 0.004 0.104
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